論文の概要: System Identification for Continuous-time Linear Dynamical Systems
- arxiv url: http://arxiv.org/abs/2308.11933v2
- Date: Sun, 15 Oct 2023 21:38:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 03:50:09.520458
- Title: System Identification for Continuous-time Linear Dynamical Systems
- Title(参考訳): 連続時間線形力学系のシステム同定
- Authors: Peter Halmos, Jonathan Pillow, David A. Knowles
- Abstract要約: 潜在線形力学系の連続時間への学習の一般化は、ハイブリッドカルマンフィルタの使用を拡大する可能性がある。
トグルスイッチ型遺伝回路を表す潜伏多変量Fokker-Planck SDEのパラメータを学習し,本手法を適用した。
- 参考スコア(独自算出の注目度): 0.8440673378588488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of system identification for the Kalman filter, relying on the
expectation-maximization (EM) procedure to learn the underlying parameters of a
dynamical system, has largely been studied assuming that observations are
sampled at equally-spaced time points. However, in many applications this is a
restrictive and unrealistic assumption. This paper addresses system
identification for the continuous-discrete filter, with the aim of generalizing
learning for the Kalman filter by relying on a solution to a continuous-time
It\^o stochastic differential equation (SDE) for the latent state and
covariance dynamics. We introduce a novel two-filter, analytical form for the
posterior with a Bayesian derivation, which yields analytical updates which do
not require the forward-pass to be pre-computed. Using this analytical and
efficient computation of the posterior, we provide an EM procedure which
estimates the parameters of the SDE, naturally incorporating irregularly
sampled measurements. Generalizing the learning of latent linear dynamical
systems (LDS) to continuous-time may extend the use of the hybrid Kalman filter
to data which is not regularly sampled or has intermittent missing values, and
can extend the power of non-linear system identification methods such as
switching LDS (SLDS), which rely on EM for the linear discrete-time Kalman
filter as a sub-unit for learning locally linearized behavior of a non-linear
system. We apply the method by learning the parameters of a latent,
multivariate Fokker-Planck SDE representing a toggle-switch genetic circuit
using biologically realistic parameters, and compare the efficacy of learning
relative to the discrete-time Kalman filter as the step-size irregularity and
spectral-radius of the dynamics-matrix increases.
- Abstract(参考訳): カルマンフィルタのシステム同定の問題は、力学系の基本パラメータを学習するための期待最大化(EM)法に依存しており、観測が等間隔の時間点でサンプリングされることを前提に研究が進められている。
しかし、多くの応用においてこれは制限的で非現実的な仮定である。
本稿では, 連続時間It\^o確率微分方程式(SDE)を潜時状態と共分散ダイナミクスの解に頼って, カルマンフィルタの学習を一般化することを目的として, 連続離散フィルタのシステム同定に対処する。
本稿では,前進パスを事前に計算する必要のない解析的更新を行うベイズ導出法により,後進部に対する新しい2フィルタ解析形式を提案する。
この解析的かつ効率的な後部計算を用いて,SDEのパラメータを推定し,不規則なサンプル測定を自然に取り入れたEMプロシージャを提供する。
潜時線形力学系(lds)の学習を連続時間に一般化することは、ハイブリッドカルマンフィルタの使用を、定期的にサンプリングされていないデータや断続的欠落値を持つデータに拡張し、線形離散時間カルマンフィルタのemを非線形システムの局所線形化挙動を学ぶサブユニットとして依存するlds(slds)などの非線形システム識別手法のパワーを拡張することができる。
生物学的に現実的なパラメータを用いてトグルスイッチの遺伝的回路を表す潜在多変量フォッカープランクsdeのパラメータを学習し、離散時間カルマンフィルタに対する学習の有効性をダイナミクス行列の増加のステップサイズの不規則性とスペクトルラジウスとして比較する。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - A least-square method for non-asymptotic identification in linear switching control [17.938732931331064]
基礎となる部分観測線形力学系は、既知の候補モデルの有限集合内にあることが知られている。
線形最小二乗法の非漸近解析における最近の進歩を活用して、この問題の有限時間サンプル複雑性を特徴づける。
基礎となるシステムの未知のパラメータを識別するデータ駆動型スイッチング戦略を提案する。
論文 参考訳(メタデータ) (2024-04-11T20:55:38Z) - Learning Nonautonomous Systems via Dynamic Mode Decomposition [0.0]
動的モード分解(DMD)に基づく時間依存入力を持つ未知の非線形力学系に対するデータ駆動学習手法を提案する。
時間依存クープマン演算子を非正則系に近似することの難しさを回避するため、修正されたシステムは元の非正則系の近似として用いられる。
論文 参考訳(メタデータ) (2023-06-27T16:58:26Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Interpretable reduced-order modeling with time-scale separation [9.889399863931676]
高次元の偏微分方程式(PDE)は計算物理学や工学でよく見られる。
本稿では,関連する時間スケールの識別を自動化するデータ駆動方式を提案する。
このデータ駆動型スキームは,線形ODEのシステムを分解する独立プロセスを自動的に学習できることを示す。
論文 参考訳(メタデータ) (2023-03-03T19:23:59Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
KalmanNetは、データから学習し、非線形力学の下でKalmanフィルタを実行するリアルタイム状態推定器である。
我々は、KalmanNetが非線形性とモデルミスマッチを克服し、古典的なフィルタリング手法より優れていることを数値的に示す。
論文 参考訳(メタデータ) (2021-07-21T12:26:46Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。