論文の概要: Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches
- arxiv url: http://arxiv.org/abs/2310.06790v2
- Date: Sun, 17 Mar 2024 20:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 03:32:38.118609
- Title: Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches
- Title(参考訳): 自動微分によるデータ駆動動的モデリングにおける予測能力の強化:クープマンとニューラルODEアプローチ
- Authors: C. Ricardo Constante-Amores, Alec J. Linot, Michael D. Graham,
- Abstract要約: クープマン作用素のデータ駆動近似は、複雑な力学によって特徴づけられるシステムの時間進化を予測することを約束している。
ここでは、観測可能な辞書とクープマン作用素の対応する近似の両方を同時に決定するEDMD-DLの修正について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics. Among these methods, the approach known as extended dynamic mode decomposition with dictionary learning (EDMD-DL) has garnered significant attention. Here we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator. This innovation leverages automatic differentiation to facilitate gradient descent computations through the pseudoinverse. We also address the performance of several alternative methodologies. We assess a 'pure' Koopman approach, which involves the direct time-integration of a linear, high-dimensional system governing the dynamics within the space of observables. Additionally, we explore a modified approach where the system alternates between spaces of states and observables at each time step -- this approach no longer satisfies the linearity of the true Koopman operator representation. For further comparisons, we also apply a state space approach (neural ODEs). We consider systems encompassing two and three-dimensional ordinary differential equation systems featuring steady, oscillatory, and chaotic attractors, as well as partial differential equations exhibiting increasingly complex and intricate behaviors. Our framework significantly outperforms EDMD-DL. Furthermore, the state space approach offers superior performance compared to the 'pure' Koopman approach where the entire time evolution occurs in the space of observables. When the temporal evolution of the Koopman approach alternates between states and observables at each time step, however, its predictions become comparable to those of the state space approach.
- Abstract(参考訳): クープマン作用素のデータ駆動近似は、複雑な力学によって特徴づけられるシステムの時間進化を予測することを約束している。
これらの手法の中で,辞書学習(EDMD-DL)を用いた拡張動的モード分解法が注目されている。
ここでは、観測可能な辞書とクープマン作用素の対応する近似の両方を同時に決定するEDMD-DLの修正について述べる。
この革新は、擬似逆数による勾配降下計算を容易にするために自動微分を利用する。
また、いくつかの代替手法の性能についても論じる。
観測可能空間内の力学を制御した線形高次元系の直接時間積分を含む「純粋」クープマンアプローチを評価する。
さらに、状態空間と観測可能空間をそれぞれのステップで交互に交互に交互に扱うような、修正されたアプローチも検討する。
さらに比較するために、状態空間アプローチ (neural ODEs) を適用する。
定常的, 振動的, カオス的誘引子を特徴とする2次元および3次元常微分方程式系と, より複雑かつ複雑な振る舞いを示す偏微分方程式を包含するシステムを考える。
我々のフレームワークはEDMD-DLを大きく上回っている。
さらに、状態空間のアプローチは、観測可能な空間で全体の時間進化が起こる「純粋な」クープマンアプローチよりも優れたパフォーマンスを提供する。
しかし、クープマンのアプローチの時間的進化が各ステップで状態と可観測物の間で交互に変化するとき、その予測は状態空間アプローチのそれと同等になる。
関連論文リスト
- On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions [0.0]
辞書学習による拡張動的モード分解(EDMD-DL)は、状態空間上の非線形離散時間フローマップのニューラルネットワーク表現と等価であることを示す。
それぞれのモデル構造と訓練手順の異なる側面を組み合わせることで,数種類のニューラル常微分方程式(ODE)とEDMD-DLを実装した。
ロレンツ系におけるカオス力学の数値実験と乱流せん断流れの9モードモデルを用いてこれらの手法を評価する。
論文 参考訳(メタデータ) (2024-11-20T00:18:46Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder [0.0]
本研究は、低次元空間におけるクープマン作用素を頑健に近似する、MZ-AE(Mori-Zwanzig autoencoder)と呼ばれる新しいアプローチを提案する。
提案手法は非線形オートエンコーダを用いて,有限不変なクープマン部分空間を近似するキーオブザーバブルを抽出する。
倉本・シヴァシンスキーに対する低次元近似を提供し、短期予測可能性と堅牢な長期統計性能を提供する。
論文 参考訳(メタデータ) (2023-10-16T18:22:02Z) - Improving Estimation of the Koopman Operator with Kolmogorov-Smirnov
Indicator Functions [0.0]
このアプローチの実践的な成功の鍵は、緩やかな緩和モードを拡張するための良い基礎となる観測可能なものの集合を同定することである。
本稿では,スローモードのよい基礎となる観測可能なものを推測する,シンプルで効率的なクラスタリング手法を提案する。
我々は、推定指標関数がクープマン作用素の主固有値の推定を大幅に改善できることを一貫して証明する。
論文 参考訳(メタデータ) (2023-06-09T15:01:43Z) - Koopa: Learning Non-stationary Time Series Dynamics with Koopman
Predictors [85.22004745984253]
実世界の時系列は、深い予測モデルにとって大きな課題となる固有の非定常性によって特徴づけられる。
我々は、基礎となる時間変動力学を根本的に考慮する現代のクープマン理論を用いて、非定常時系列に取り組む。
階層的力学を学習する積み重ね可能なブロックからなる新しいクープマン予測器としてクーパを提案する。
論文 参考訳(メタデータ) (2023-05-30T07:40:27Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
従属拡散過程を変調したマルコフジャンプ過程に基づくモデルを提案する。
我々は,新しい連続時間変動推定アルゴリズムを開発した。
モデル仮定と実世界の実例に基づいて,我々のアルゴリズムを広範囲に評価する。
論文 参考訳(メタデータ) (2021-09-29T15:19:51Z) - Deep Learning Enhanced Dynamic Mode Decomposition [0.0]
畳み込みオートエンコーダネットワークを用いて、観測対象の最適なファミリーを同時に見つける。
また,観測可能空間への流れの正確な埋め込みと,観測可能空間の流れ座標への浸漬も生成する。
このネットワークはフローのグローバルな変換をもたらし、EDMDとデコーダネットワークを介して将来の状態を予測する。
論文 参考訳(メタデータ) (2021-08-10T03:54:23Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。