論文の概要: Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
- arxiv url: http://arxiv.org/abs/2310.10745v2
- Date: Tue, 16 Apr 2024 15:22:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 01:50:05.269366
- Title: Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
- Title(参考訳): 非線形オートエンコーダのための森-Zwanzig潜在空間クープマン閉包
- Authors: Priyam Gupta, Peter J. Schmid, Denis Sipp, Taraneh Sayadi, Georgios Rigas,
- Abstract要約: 本研究は、低次元空間におけるクープマン作用素を頑健に近似する、MZ-AE(Mori-Zwanzig autoencoder)と呼ばれる新しいアプローチを提案する。
提案手法は非線形オートエンコーダを用いて,有限不変なクープマン部分空間を近似するキーオブザーバブルを抽出する。
倉本・シヴァシンスキーに対する低次元近似を提供し、短期予測可能性と堅牢な長期統計性能を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Koopman operator presents an attractive approach to achieve global linearization of nonlinear systems, making it a valuable method for simplifying the understanding of complex dynamics. While data-driven methodologies have exhibited promise in approximating finite Koopman operators, they grapple with various challenges, such as the judicious selection of observables, dimensionality reduction, and the ability to predict complex system behaviors accurately. This study presents a novel approach termed Mori-Zwanzig autoencoder (MZ-AE) to robustly approximate the Koopman operator in low-dimensional spaces. The proposed method leverages a nonlinear autoencoder to extract key observables for approximating a finite invariant Koopman subspace and integrates a non-Markovian correction mechanism using the Mori-Zwanzig formalism. Consequently, this approach yields a closed representation of dynamics within the latent manifold of the nonlinear autoencoder, thereby enhancing the precision and stability of the Koopman operator approximation. Demonstrations showcase the technique's ability to capture regime transitions in the flow around a cylinder. It also provides a low dimensional approximation for Kuramoto-Sivashinsky with promising short-term predictability and robust long-term statistical performance. By bridging the gap between data-driven techniques and the mathematical foundations of Koopman theory, MZ-AE offers a promising avenue for improved understanding and prediction of complex nonlinear dynamics.
- Abstract(参考訳): クープマン作用素は、非線形系の大域的線形化を達成するための魅力的なアプローチを示し、複素力学の理解を単純化する貴重な方法である。
データ駆動の方法論は、有限クープマン作用素の近似において有望であるが、観測可能な変数の選択、次元の減少、複雑なシステムの振る舞いを正確に予測する能力など、様々な課題に悩まされている。
本研究は、低次元空間におけるクープマン作用素を頑健に近似する、MZ-AE(Mori-Zwanzig autoencoder)と呼ばれる新しいアプローチを提案する。
提案手法は非線形オートエンコーダを用いて,有限不変なクープマン部分空間を近似するキーオブザーバブルを抽出し,モリ・ズワンジッヒ形式を用いた非マルコフ補正機構を統合する。
これにより、非線形自己エンコーダの潜在多様体内の力学の閉表現が得られ、クープマン作用素近似の精度と安定性が向上する。
デモでは、シリンダー周りの流れにおける状態遷移を捉える技術が紹介されている。
また、倉本・シヴァシンスキーに対する低次元近似も提供し、短期予測可能性と堅牢な長期統計性能が期待できる。
データ駆動技術とクープマン理論の数学的基礎とのギャップを埋めることにより、MZ-AEは複雑な非線形力学の理解と予測を改善するための有望な道を提供する。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Uncertainty Modelling and Robust Observer Synthesis using the Koopman Operator [5.317624228510749]
クープマン作用素は非線形系を無限次元線型系として書き換えることを可能にする。
クープマン作用素の有限次元近似は、データから直接同定することができる。
提案手法を実験的に実証するために、数十台のモータードライブの人口を用いている。
論文 参考訳(メタデータ) (2024-10-01T20:31:18Z) - Multiplicative Dynamic Mode Decomposition [4.028503203417233]
有限次元近似においてクープマン作用素に固有の乗法構造を強制する乗法動的モード分解(MultDMD)を導入する。
MultDMDは有限次元近似に対する構造化されたアプローチを示し、クープマン作用素のスペクトル特性を正確に反映することができる。
我々は,MultDMDの理論的枠組みについて詳述し,その定式化,最適化戦略,収束特性について詳述する。
論文 参考訳(メタデータ) (2024-05-08T18:09:16Z) - Exploiting hidden structures in non-convex games for convergence to Nash
equilibrium [62.88214569402201]
現代の機械学習アプリケーションは、非協調的なナッシュリリアとして定式化することができる。
決定論的環境と決定論的環境の両方に明確な収束保証を提供する。
論文 参考訳(メタデータ) (2023-12-27T15:21:25Z) - Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches [0.0]
クープマン作用素のデータ駆動近似は、複雑な力学によって特徴づけられるシステムの時間進化を予測することを約束している。
ここでは、観測可能な辞書とクープマン作用素の対応する近似の両方を同時に決定するEDMD-DLの修正について述べる。
論文 参考訳(メタデータ) (2023-10-10T17:04:21Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Koopman Kernel Regression [6.116741319526748]
クープマン作用素理論は線形時間不変(LTI)ODEによる予測のキャラクタリゼーションに有効なパラダイムであることを示す。
我々は、LTI力学系への変換のみにまたがる、普遍的なクープマン不変核再生ヒルベルト空間(RKHS)を導出する。
実験では、Koopman演算子やシーケンシャルデータ予測器と比較して予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2023-05-25T16:22:22Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Sparsity-promoting algorithms for the discovery of informative Koopman
invariant subspaces [0.0]
本稿では,マルチタスク特徴学習に基づくフレームワークを提案し,部分空間における最も情報に富むクープマンを抽出する。
提案手法は, 提案アルゴリズム, 疎度MDD, およびKDMDを促進する経験的基準との関係を示す。
論文 参考訳(メタデータ) (2020-02-25T03:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。