論文の概要: Quantum Algorithm for Dynamic Mode Decomposition and Matrix Eigenvalue
Decomposition with Complex Eigenvalues
- arxiv url: http://arxiv.org/abs/2310.17783v1
- Date: Thu, 26 Oct 2023 21:21:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 15:35:58.775519
- Title: Quantum Algorithm for Dynamic Mode Decomposition and Matrix Eigenvalue
Decomposition with Complex Eigenvalues
- Title(参考訳): 複素固有値を用いた動的モード分解と行列固有値分解の量子アルゴリズム
- Authors: Yuta Mizuno, Tamiki Komatsuzaki
- Abstract要約: 本稿では,量子微分方程式解法によりシミュレーションされた時系列データを解析する量子アルゴリズムを提案する。
我々の量子アルゴリズムは、対応する線形力学系を解析することによって行列固有値の抽出も可能である。
- 参考スコア(独自算出の注目度): 0.40792653193642503
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a quantum algorithm that analyzes time series data simulated by a
quantum differential equation solver. The proposed algorithm is a quantum
version of the dynamic mode decomposition algorithm used in diverse fields such
as fluid dynamics and epidemiology. Our quantum algorithm can also extract
matrix eigenvalues by analyzing the corresponding linear dynamical system. Our
algorithm handles a broader range of matrices with complex eigenvalues, unlike
existing efficient quantum eigensolvers limited to specific matrix types. The
complexity of our quantum algorithm is $O(\operatorname{poly}\log N)$ for an
$N$-dimensional system. This is an exponential speedup over known classical
algorithms with at least $O(N)$ complexity. Thus, our quantum algorithm is
expected to enable high-dimensional dynamical system analysis and large matrix
eigenvalue decomposition, intractable for classical computers.
- Abstract(参考訳): 量子微分方程式解法によりシミュレーションされた時系列データを解析する量子アルゴリズムを提案する。
提案アルゴリズムは流体力学や疫学などの様々な分野で使用される動的モード分解アルゴリズムの量子バージョンである。
量子アルゴリズムは、対応する線形力学系を分析して行列固有値を抽出することもできる。
我々のアルゴリズムは、特定の行列型に限定された既存の効率的な量子固有解法とは異なり、複雑な固有値を持つ幅広い行列を扱う。
我々の量子アルゴリズムの複雑さは、$N$次元システムに対して$O(\operatorname{poly}\log N)$である。
これは既知の古典的アルゴリズムに対する指数的なスピードアップであり、少なくともO(N)$複雑性を持つ。
したがって, 量子アルゴリズムでは, 高次元力学系解析と行列固有値分解が可能であり, 古典的計算機では難解である。
関連論文リスト
- Design nearly optimal quantum algorithm for linear differential equations via Lindbladians [11.53984890996377]
オープン量子システムを用いたODEの新しい量子アルゴリズムを提案する。
我々は、非対角密度行列符号化と呼ばれる新しい手法の助けを借りて、リンドブレディアンの自然な非単位力学を用いる。
我々のアルゴリズムは、既存の量子ODEアルゴリズムを全て上回り、全てのパラメータにほぼ最適に依存することができる。
論文 参考訳(メタデータ) (2024-10-25T15:27:41Z) - Quantum multi-row iteration algorithm for linear systems with non-square coefficient matrices [7.174256268278207]
古典的マルチロー反復法に着想を得た量子アルゴリズムを提案する。
本アルゴリズムは,不整合系の解法に適した係数行列の要求を小さくする。
論文 参考訳(メタデータ) (2024-09-06T03:32:02Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
量子アリーモト・ブラフトアルゴリズムをRamakrishnanらにより一般化する。
3つの量子系を持つ量子情報ボトルネックに対して,我々のアルゴリズムを適用した。
数値解析により,我々のアルゴリズムはアルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-19T00:06:11Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
我々は、数値複雑性を持つ量子アルゴリズムを、$N$で多対数であるが、大規模なPDEに対して$kappa$とは独立に提示する。
提案アルゴリズムは,解の特徴を抽出する量子状態を生成する。
論文 参考訳(メタデータ) (2023-06-20T18:01:07Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
我々は、von-Neumann方程式を線形化するための一般的なフレームワークを開発し、量子シミュレーションに適した形でレンダリングする。
フォン・ノイマン方程式のこれらの線型化のうちの1つは、状態ベクトルが密度行列の列重ね元となる標準的な場合に対応することを示す。
密度行列の力学をシミュレートする量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-14T23:08:51Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
与えられたエルミート行列の大きさで最大の固有値を推定するための量子アルゴリズムを提供する。
我々の量子プロシージャは、同じ問題を解決する古典的なアルゴリズムと比較して指数的なスピードアップを得ることができる。
論文 参考訳(メタデータ) (2022-11-11T13:02:07Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum algorithms for spectral sums [50.045011844765185]
正半定値行列(PSD)のスペクトル和を推定するための新しい量子アルゴリズムを提案する。
本稿では, スペクトルグラフ理論における3つの問題に対して, アルゴリズムと手法が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-12T16:29:45Z) - High-precision quantum algorithms for partial differential equations [1.4050836886292872]
量子コンピュータは、古典的アルゴリズムよりも指数関数的に高速な微分方程式系の解の量子符号化を生成することができる。
適応次有限差分法とスペクトル法に基づく量子アルゴリズムを開発した。
我々のアルゴリズムは、条件数と近似誤差が有するシステムに対して、高精度な量子線形系アルゴリズムを適用している。
論文 参考訳(メタデータ) (2020-02-18T20:32:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。