論文の概要: Discrete approximations of Gaussian smoothing and Gaussian derivatives
- arxiv url: http://arxiv.org/abs/2311.11317v6
- Date: Tue, 30 Apr 2024 06:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 19:37:57.190906
- Title: Discrete approximations of Gaussian smoothing and Gaussian derivatives
- Title(参考訳): ガウス滑らか化とガウス微分の離散近似
- Authors: Tony Lindeberg,
- Abstract要約: 本稿では,離散データに適用するためのスケール空間理論におけるガウススムージングとガウス微分計算の近似問題に関する詳細な処理法を開発する。
我々は、これらのスケール空間の操作を明示的な離散的畳み込みの観点から区別する3つの主要な方法を考える。
本稿では,これら3つの主要な離散化手法の特性を理論的および実験的に検討する。
- 参考スコア(独自算出の注目度): 0.5439020425819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.
- Abstract(参考訳): 本稿では,離散データに適用するためのスケール空間理論におけるガウススムージングとガウス微分計算の近似問題に関する詳細な処理法を開発する。
連続的および離散的スケール空間理論の以前の公理的処理と密接な関係で、これらのスケール空間の操作を明示的な離散的畳み込みの観点から区別する3つの主要な方法を考える。
(i)ガウス核とガウス微分核をサンプリングする。
(ii)各画素支持領域上にガウス核とガウス微分核を局所的に統合し、
3) ガウス核の離散的類似点のスケール空間解析を基礎とし, 空間的スムーズな画像データに小サポート中央差分演算子を適用することにより微分近似を計算する。
本研究では,これら3つの主要な離散化手法の特性を理論的・実験的に検討し,その性能を定量的に評価する。
その結果、サンプル化されたガウス核と導関数、および統合されたガウス核と導関数は、非常に微細なスケールで非常に低性能であることがわかった。
非常に微細なスケールでは、ガウス核の離散的な類似とそれに対応する離散微分近似が大幅に向上する。
一方、サンプル化されたガウス核とサンプル化されたガウス微分は、スケールパラメータが十分に大きい場合、グリッド間隔の単位においてスケールパラメータが約1より大きい場合、対応する連続結果の数値的に非常に良い近似をもたらす。
関連論文リスト
- Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators [0.5439020425819]
本稿ではガウス微分に対する2つのハイブリッド離散化法の特性について解析する。
これらの離散化手法を研究する動機は、異なる順序の複数の空間微分が同じスケールレベルで必要である場合、より効率的に計算できることである。
論文 参考訳(メタデータ) (2024-05-08T14:44:34Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
離散化マルコフ過程に基づく$mu_phi $の線形汎函数の2つの推定器を検討する。
誤差境界は、本質的に定義されたランゲヴィン拡散の離散化を用いてサンプリングと推定のために導出される。
論文 参考訳(メタデータ) (2023-12-22T18:01:11Z) - Gaussian Process Regression under Computational and Epistemic Misspecification [4.5656369638728656]
大規模データアプリケーションでは、カーネルの低ランクあるいはスパース近似を用いて計算コストを削減できる。
本稿では,そのようなカーネル近似が要素誤差に与える影響について検討する。
論文 参考訳(メタデータ) (2023-12-14T18:53:32Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
我々は,本質的なガウス過程が実際により優れた性能を発揮することを示す。
我々の研究は、データ効率の異なるレベルを区別するために、よりきめ細かい分析が必要であることを示している。
論文 参考訳(メタデータ) (2023-09-19T20:30:58Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
本稿では,一般的なガウスカーネルと,ランダムな特徴近似を用いてカーネルベースモデルを線形化する手法に着目する。
このような手法は、高周波データをモデル化する際、悪い結果をもたらすことを示すとともに、カーネル近似と下流性能を大幅に改善する新たなローカライズ手法を提案する。
論文 参考訳(メタデータ) (2022-04-12T09:52:36Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - High-Dimensional Gaussian Process Inference with Derivatives [90.8033626920884]
低データ状態の$ND$では、Gram行列は$mathcalO(N2D + (N2)3)$に推論のコストを下げる方法で分解できることを示す。
最適化や予測勾配を持つハミルトニアンモンテカルロなど、機械学習に関連する様々なタスクでこの可能性を実証する。
論文 参考訳(メタデータ) (2021-02-15T13:24:41Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Learning interaction kernels in mean-field equations of 1st-order
systems of interacting particles [1.776746672434207]
相互作用粒子の1次系に対する平均場方程式の相互作用核を学習するための非パラメトリックアルゴリズムを提案する。
少なくとも正則化と二乗することにより、アルゴリズムはデータ適応仮説空間上でカーネルを効率的に学習する。
論文 参考訳(メタデータ) (2020-10-29T15:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。