論文の概要: Identifying percolation phase transitions with unsupervised learning based on largest clusters
- arxiv url: http://arxiv.org/abs/2311.14725v3
- Date: Mon, 09 Dec 2024 10:33:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:47:44.676715
- Title: Identifying percolation phase transitions with unsupervised learning based on largest clusters
- Title(参考訳): 大規模クラスタに基づく教師なし学習によるパーコレーション相転移の同定
- Authors: Dian Xu, Shanshan Wang, Weibing Deng, Feng Gao, Wei Li, Jianmin Shen,
- Abstract要約: 学習モデルに本来の構成ではなく、最大のクラスタを入力することで、教師なし学習が実際にパーコレーションモデルの臨界点を予測することができることを示す。
また,Fake Finite Size Scaling (FFSS) という手法を提案する。
- 参考スコア(独自算出の注目度): 6.086561505970236
- License:
- Abstract: The application of machine learning in the study of phase transitions has achieved remarkable success in both equilibrium and non-equilibrium systems. It is widely recognized that unsupervised learning can retrieve phase transition information through hidden variables. However, using unsupervised methods to identify the critical point of percolation models has remained an intriguing challenge. This paper suggests that, by inputting the largest cluster rather than the original configuration into the learning model, unsupervised learning can indeed predict the critical point of the percolation model. Furthermore, we observe that when the largest cluster configuration is randomly shuffled-altering the positions of occupied sites or bonds-there is no significant difference in the output compared to learning the largest cluster configuration directly. This finding suggests a more general principle: unsupervised learning primarily captures particle density, or more specifically, occupied site density. However, shuffling does impact the formation of the largest cluster, which is directly related to phase transitions. As randomness increases, we observe that the correlation length tends to decrease, providing direct evidence of this relationship. We also propose a method called Fake Finite Size Scaling (FFSS) to calculate the critical value, which improves the accuracy of fitting to a great extent.
- Abstract(参考訳): 相転移の研究における機械学習の適用は、平衡系と非平衡系の両方において顕著な成功を収めた。
教師なし学習は隠れ変数を通して相転移情報を検索できることが広く認識されている。
しかし、パーコレーションモデルの臨界点を特定するために教師なしの手法を用いることは、いまだに興味深い課題である。
本稿では,学習モデルに本来の構成ではなく,最大のクラスタを組み込むことで,教師なし学習がパーコレーションモデルの臨界点を実際に予測できることを示唆する。
さらに, 最大クラスタ構成がランダムにシャッフルされている場合, 占有部位や結合位置は, 最大クラスタ構成を直接学習した場合に比べて, 出力に有意な差は認められない。
教師なし学習は、主に粒子密度、またはより具体的には占有された部位密度をキャプチャする。
しかしシャッフルは、相転移に直接関係する最大のクラスターの形成に影響を及ぼす。
ランダム性の増加に伴い、相関長は減少傾向にあり、この関係の直接的な証拠となる。
また,Fake Finite Size Scaling (FFSS) という手法を提案する。
関連論文リスト
- Gradient-Based Feature Learning under Structured Data [57.76552698981579]
異方性設定では、一般的に使用される球面勾配力学は真の方向を回復できないことがある。
バッチ正規化を連想させる適切な重み正規化は、この問題を軽減することができることを示す。
特に、スパイクモデルの下では、勾配に基づくトレーニングのサンプルの複雑さは情報指数とは独立にできる。
論文 参考訳(メタデータ) (2023-09-07T16:55:50Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
マルチオブジェクト状態推定はロボットアプリケーションの基本的な問題である。
粒子法を用いて最大形パラメータを学習することを検討する。
自動運転車から収集した実データに本手法を適用した。
論文 参考訳(メタデータ) (2022-12-14T01:21:05Z) - Fundamental limits to learning closed-form mathematical models from data [0.0]
ノイズの多いデータセットが与えられたら、データだけで真の生成モデルを学ぶことはいつ可能だろうか?
この問題は,真のモデルが学習可能な低雑音位相から,観測ノイズが高すぎて真のモデルが学習できない位相への遷移を示す。
論文 参考訳(メタデータ) (2022-04-06T10:00:33Z) - Transfer learning of phase transitions in percolation and directed
percolation [2.0342076109301583]
本研究では,非平衡・平衡相転移モデルの研究のために,転送学習に基づくドメイン対向ニューラルネットワーク(DANN)を適用した。
両モデルのDANN学習はモンテカルロシミュレーションに匹敵する信頼性の高い結果をもたらす。
論文 参考訳(メタデータ) (2021-12-31T15:24:09Z) - A learning algorithm with emergent scaling behavior for classifying
phase transitions [0.0]
本研究では,測定データから重要な現象を研究するための教師付き学習アルゴリズムを提案する。
We test it on the transverse field Ising chain and q=6 Potts model。
本アルゴリズムは, 系の熱力学的位相を正確に同定し, 射影測定からスケーリング挙動を抽出する。
論文 参考訳(メタデータ) (2021-03-29T18:05:27Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
超低温原子からの実験データに教師なし機械学習技術を適用する。
我々は、完全にバイアスのない方法で、ハルダンモデルの位相位相図を得る。
我々の研究は、複雑な多体系における新しいエキゾチック位相の教師なし検出のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2021-01-14T16:38:21Z) - Emergence of a finite-size-scaling function in the supervised learning
of the Ising phase transition [0.7658140759553149]
強磁性イジングモデルにおける二相分類の教師付き学習と二階相転移の標準有限サイズスケーリング理論との関係について検討する。
1つの自由パラメータだけで、ネットワーク出力における普遍的な有限サイズスケーリング関数の出現を記述するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-10-01T12:34:12Z) - Interpolation and Learning with Scale Dependent Kernels [91.41836461193488]
非パラメトリックリッジレス最小二乗の学習特性について検討する。
スケール依存カーネルで定義される推定器の一般的な場合を考える。
論文 参考訳(メタデータ) (2020-06-17T16:43:37Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
本研究では, 測定データの非線形次元減少とスペクトルクラスタリングを行う拡散写像法が, 教師なしの複雑な位相遷移を学習する上で有意なポテンシャルを持つことを示す。
この方法は、局所観測可能量の単一の基底での測定に役立ち、多くの実験的な量子シミュレータに容易に適用できる。
論文 参考訳(メタデータ) (2020-03-16T18:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。