論文の概要: Learning of Hamiltonian Dynamics with Reproducing Kernel Hilbert Spaces
- arxiv url: http://arxiv.org/abs/2312.09734v1
- Date: Fri, 15 Dec 2023 12:19:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 16:06:34.070371
- Title: Learning of Hamiltonian Dynamics with Reproducing Kernel Hilbert Spaces
- Title(参考訳): 核ヒルベルト空間を再現したハミルトン力学の学習
- Authors: Torbj{\o}rn Smith, Olav Egeland
- Abstract要約: 本稿では,限られたデータ点からハミルトン力学を学習する手法を提案する。
学習力学はハミルトニアンであり、学習したハミルトニアンベクトル場は奇数あるいは偶数となることが示されている。
- 参考スコア(独自算出の注目度): 0.844067337858849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a method for learning Hamiltonian dynamics from a limited
set of data points. The Hamiltonian vector field is found by regularized
optimization over a reproducing kernel Hilbert space of vector fields that are
inherently Hamiltonian, and where the vector field is required to be odd or
even. This is done with a symplectic kernel, and it is shown how this
symplectic kernel can be modified to be odd or even. The performance of the
method is validated in simulations for two Hamiltonian systems. It is shown
that the learned dynamics are Hamiltonian, and that the learned Hamiltonian
vector field can be prescribed to be odd or even.
- Abstract(参考訳): 本稿では,限られたデータ点からハミルトン力学を学習する手法を提案する。
ハミルトニアンベクトル場は、本質的にハミルトニアンであり、ベクトル場が奇数あるいは偶数であるようなベクトル場の再生核ヒルベルト空間上の正規化された最適化によって発見される。
これはシンプレクティックカーネルで行われ、このシンプレクティックカーネルが奇妙でも偶数でも変更可能であることを示す。
この手法の性能は2つのハミルトニアン系のシミュレーションで検証される。
学習したダイナミクスはハミルトニアンであり、学習されたハミルトニアンベクトル場は奇数あるいは偶数であると定式化できることを示した。
関連論文リスト
- Learning dissipative Hamiltonian dynamics with reproducing kernel Hilbert spaces and random Fourier features [0.7510165488300369]
本稿では,限定的かつノイズの多いデータセットから散逸的ハミルトン力学を学習するための新しい手法を提案する。
この手法の性能は、2つの散逸するハミルトン系のシミュレーションで検証される。
論文 参考訳(メタデータ) (2024-10-24T11:35:39Z) - Truncated Gaussian basis approach for simulating many-body dynamics [0.0]
このアプローチは、フェルミオンガウス状態にまたがる縮小部分空間内で有効ハミルトニアンを構築し、近似固有状態と固有エネルギーを得るために対角化する。
対称性を利用して並列計算を行い、より大きなサイズでシステムをシミュレートすることができる。
クエンチ力学では,時間発展する部分空間の波動関数が時間的ダイナミクスのシミュレーションを促進することが観察される。
論文 参考訳(メタデータ) (2024-10-05T15:47:01Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
本稿では, 非線形常微分方程式の初期値問題を解くために, 繰り返し測定に基づく量子アルゴリズムを提案する。
古典ロジスティック系とローレンツ系に、積分可能かつカオス的条件の両方でこのアプローチを適用する。
論文 参考訳(メタデータ) (2024-10-04T18:06:12Z) - Learning Hamiltonian Dynamics with Reproducing Kernel Hilbert Spaces and Random Features [0.7510165488300369]
この手法の性能は3つのハミルトニアン系のシミュレーションで検証される。
奇数のシンプレクティックカーネルを用いることで,予測精度とデータ効率が向上することが実証された。
論文 参考訳(メタデータ) (2024-04-11T12:49:30Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
そこで,WSINDy は大規模内在系の存在下でハミルトン系を小さくすることに成功した。
WSINDy は、ハミルトンベクトル場の試行基底に制限を加えることにより、ハミルトン構造を自然に保存する。
また、ベクトル場のレベルでの1次平均化は、ほぼ周期的なハミルトン系におけるハミルトン構造を保存することを証明して平均化理論に寄与する。
論文 参考訳(メタデータ) (2023-10-09T17:20:04Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
我々は、von-Neumann方程式を線形化するための一般的なフレームワークを開発し、量子シミュレーションに適した形でレンダリングする。
フォン・ノイマン方程式のこれらの線型化のうちの1つは、状態ベクトルが密度行列の列重ね元となる標準的な場合に対応することを示す。
密度行列の力学をシミュレートする量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-14T23:08:51Z) - Mapping Molecular Hamiltonians into Hamiltonians of Modular cQED
Processors [50.893896302254944]
本稿では,任意のモデル系のハミルトニアンを回路量子力学(cQED)プロセッサのハミルトニアンにマッピングする方法を提案する。
この方法は、Fenna-Matthews-Olson錯体の量子力学シミュレーションと電荷移動のスピン-ボソンモデルに適用される。
論文 参考訳(メタデータ) (2023-06-10T04:52:58Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
キタエフスピンモデルは、自由フェルミオンへの写像を通じて、あるパラメータ状態において正確に解けることで知られている。
古典的なシミュレーションを用いて、このフェルミオン表現を利用する新しい変分アンザッツを探索する。
また、量子コンピュータ上での非アベリアオンをシミュレートするための結果の意味についてもコメントする。
論文 参考訳(メタデータ) (2022-04-11T18:00:01Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。