論文の概要: On the Convergence of Hermitian Dynamic Mode Decomposition
- arxiv url: http://arxiv.org/abs/2401.03192v2
- Date: Mon, 07 Oct 2024 15:21:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:08:30.944440
- Title: On the Convergence of Hermitian Dynamic Mode Decomposition
- Title(参考訳): エルミート動的モード分解の収束性について
- Authors: Nicolas Boullé, Matthew J. Colbrook,
- Abstract要約: 自己随伴クープマン作用素のスペクトル特性に対するエルミート力学モード分解の収束性について検討する。
2次元シュリンガー方程式に適用して数値的な結果を示す。
- 参考スコア(独自算出の注目度): 4.028503203417233
- License:
- Abstract: We study the convergence of Hermitian Dynamic Mode Decomposition (DMD) to the spectral properties of self-adjoint Koopman operators. Hermitian DMD is a data-driven method that approximates the Koopman operator associated with an unknown nonlinear dynamical system, using discrete-time snapshots. This approach preserves the self-adjointness of the operator in its finite-dimensional approximations. \rev{We prove that, under suitably broad conditions, the spectral measures corresponding to the eigenvalues and eigenfunctions computed by Hermitian DMD converge to those of the underlying Koopman operator}. This result also applies to skew-Hermitian systems (after multiplication by $i$), applicable to generators of continuous-time measure-preserving systems. Along the way, we establish a general theorem on the convergence of spectral measures for finite sections of self-adjoint operators, including those that are unbounded, which is of independent interest to the wider spectral community. We numerically demonstrate our results by applying them to two-dimensional Schr\"odinger equations.
- Abstract(参考訳): 自己随伴クープマン作用素のスペクトル特性に対するエルミート力学モード分解(DMD)の収束性について検討する。
Hermitian DMDは、離散時間スナップショットを用いて、未知の非線形力学系に関連するクープマン作用素を近似するデータ駆動方式である。
このアプローチは作用素の有限次元近似における自己随伴性を保存する。
好ましくは広い条件下で、エルミート DMD によって計算される固有値と固有関数に対応するスペクトル測度が、基礎となるクープマン作用素のそれと収束することを証明します。
この結果はスキュー・エルミート系にも適用され($i$の乗法の後)、連続時間測度保存系の生成元にも適用できる。
その過程で、非有界な作用素を含む自己随伴作用素の有限区間に対するスペクトル測度の収束に関する一般定理を確立する。
2次元シュリンガー方程式に適用して数値的な結果を示す。
関連論文リスト
- Multiplicative Dynamic Mode Decomposition [4.028503203417233]
有限次元近似においてクープマン作用素に固有の乗法構造を強制する乗法動的モード分解(MultDMD)を導入する。
MultDMDは有限次元近似に対する構造化されたアプローチを示し、クープマン作用素のスペクトル特性を正確に反映することができる。
我々は,MultDMDの理論的枠組みについて詳述し,その定式化,最適化戦略,収束特性について詳述する。
論文 参考訳(メタデータ) (2024-05-08T18:09:16Z) - Rigged Dynamic Mode Decomposition: Data-Driven Generalized Eigenfunction Decompositions for Koopman Operators [0.0]
そこで我々は,Koopman演算子の一般化固有関数分解を計算するRiged Dynamic Mode Decomposition (Rigged DMD)アルゴリズムを提案する。
Rigged DMDは、クープマン作用素の分解基とその一般化固有関数を近似するデータ駆動方法論による課題に対処する。
例として、ルベーグスペクトルを持つ系、可積分ハミルトニアン系、ローレンツ系、および2次元正方形空洞内のレイノルズ数蓋駆動流れについて述べる。
論文 参考訳(メタデータ) (2024-05-01T18:00:18Z) - Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces [16.00267662259167]
本稿では、再生カーネルヒルベルト空間(RKHS)とそのスペクトル上で定義されるクープマン作用素を推定するための新しいアプローチを提案する。
本稿では,RKHSの固有構造とジェットと呼ばれる幾何学的概念を活かしたJetDMD(Jet Dynamic Mode Decomposition)を提案する。
この手法は従来の拡張動的モード分解(EDMD)を精度よく洗練し、特に固有値の数値的な推定を行う。
論文 参考訳(メタデータ) (2024-03-04T22:28:20Z) - Learning Dynamical Systems via Koopman Operator Regression in
Reproducing Kernel Hilbert Spaces [52.35063796758121]
動的システムの有限データ軌跡からクープマン作用素を学ぶためのフレームワークを定式化する。
リスクとクープマン作用素のスペクトル分解の推定を関連付ける。
以上の結果から,RRRは他の広く用いられている推定値よりも有益である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-27T14:57:48Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Singular Dynamic Mode Decompositions [8.37609145576126]
この写本は、クープマン解析の適用において、動的モード分解の長期的制限に対処することを目的としている。
これらの制限のうちの原則は、関連する動的モード分解アルゴリズムの収束とクープマンモードの存在である。
原稿は、データから生じる高い占有カーネルの集合が分析に利用されたときに収束する動的モード分解アルゴリズムを記述して締めくくっている。
論文 参考訳(メタデータ) (2021-06-06T21:00:26Z) - The kernel perspective on dynamic mode decomposition [4.051099980410583]
この写本は、クープマン作用素の動的モード分解(DMD)に関する理論的仮定を再考する。
各仮定に対して、仮定の制約性を示す反例が提供される。
DMDの新しいフレームワークは、RKHSよりも密に定義されたクープマン作用素のみを必要とする。
論文 参考訳(メタデータ) (2021-05-31T21:20:01Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
量子情報力学と熱化を特徴付けるツールとして、OTOC(Out-of-time-orderor)が確立されている。
我々は、OTOCが、ETH(Eigenstate Thermalisation hypothesis)の詳細な詳細を調査するための、本当に正確なツールであることを明確に示している。
無限温度状態における局所作用素の和からなる可観測物の一般クラスに対して、$omega_textrmGOE$の有限サイズスケーリングを推定する。
論文 参考訳(メタデータ) (2021-03-01T17:51:46Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
ゼロ範囲の2体相互作用によって相互に結合された同一ボソンからなる3体系に対する量子ハミルトニアンの構成について述べる。
プレゼンテーションの大部分では、無限の散乱長が考慮される。
論文 参考訳(メタデータ) (2020-06-03T17:54:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。