論文の概要: Learning with Geometry: Including Riemannian Geometric Features in Coefficient of Pressure Prediction on Aircraft Wings
- arxiv url: http://arxiv.org/abs/2401.09452v2
- Date: Wed, 06 Nov 2024 04:25:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:21:22.957366
- Title: Learning with Geometry: Including Riemannian Geometric Features in Coefficient of Pressure Prediction on Aircraft Wings
- Title(参考訳): 幾何学による学習:航空機翼の圧力予測係数におけるリーマン幾何学的特徴を含む
- Authors: Liwei Hu, Wenyong Wang, Yu Xiang, Stefan Sommer,
- Abstract要約: 我々は翼を断片的に滑らかな多様体として表現し、翼の点上のリーマン幾何学的特徴の集合を計算する。
本手法は,圧力係数の平均2乗誤差(MSE)を平均150%低減する。
- 参考スコア(独自算出の注目度): 4.559097917704049
- License:
- Abstract: We propose to incorporate Riemannian geometric features from the geometry of aircraft wing surfaces in the prediction of coefficient of pressure (CP) on the aircraft wing. Contrary to existing approaches that treat the wing surface as a flat object, we represent the wing as a piecewise smooth manifold and calculate a set of Riemannian geometric features (Riemannian metric, connection, and curvature) over points of the wing. Combining these features in neighborhoods of points on the wing with coordinates and flight conditions gives inputs to a deep learning model that predicts CP distributions. Experimental results show that the method with incorporation of Riemannian geometric features, compared to state-of-the-art Deep Attention Network (DAN), reduces the predicted mean square error (MSE) of CP by an average of 15.00% for the DLR-F11 aircraft test set.
- Abstract(参考訳): 本研究では,航空機翼の圧力係数(CP)の予測に,航空機翼面の形状からリーマン幾何学的特徴を取り入れることを提案する。
翼面を平坦な対象として扱う既存のアプローチとは対照的に、翼を断片的に滑らかな多様体として表現し、翼の点上のリーマン幾何学的特徴(リーマン計量、接続、曲率)の集合を計算する。
これらの特徴を翼上の点の近傍に座標と飛行条件を組み合わせることで、CP分布を予測する深層学習モデルに入力を与える。
実験結果から,DLR-F11航空機テストセットの平均平均二乗誤差(MSE)を平均15.00%削減する手法が,最先端のDeep Attention Network (DAN)と比較して,リーマン幾何学的特徴を取り入れた手法であることが示唆された。
関連論文リスト
- AirPlanes: Accurate Plane Estimation via 3D-Consistent Embeddings [26.845588648999417]
本研究では,3次元画像から平面面を推定する問題に対処する。
本稿では,平面へのクラスタリングにおける幾何を補完する多視点一貫した平面埋め込みを予測する手法を提案する。
我々は、ScanNetV2データセットの広範な評価を通じて、我々の新しい手法が既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2024-06-13T09:49:31Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
本稿では,幾何学的文脈を取り入れつつ,画像から深度や表面正規度などの測地を学習するための新しい手法を提案する。
提案手法は,入力画像に存在する幾何学的変動を符号化した幾何学的文脈を抽出し,幾何的制約と深度推定を相関付ける。
本手法は,画像から高品質な3次元形状を生成可能な密着型フレームワーク内での深度と表面の正規分布推定を統一する。
論文 参考訳(メタデータ) (2024-02-08T17:57:59Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - A Manifold-based Airfoil Geometric-feature Extraction and Discrepant
Data Fusion Learning Method [17.632073629030845]
本研究では, 航空機の幾何学的特徴を抽出するために, 多様体を用いた翼形状抽出と離散データ融合学習法を提案する。
実験により,本手法は既存の手法によりより高精度に翼形状を抽出できることが示唆された。
論文 参考訳(メタデータ) (2022-06-23T08:55:21Z) - Parametric Generative Schemes with Geometric Constraints for Encoding
and Synthesizing Airfoils [25.546237636065182]
特定の制約を満たしつつ,設計空間の複雑さを捉えるために,ディープラーニングに基づく2つの生成スキームを提案する。
ソフト制約スキームは、予想される幾何学的制約からわずかにずれた翼を生成するが、それでも基準翼に収束する。
制約の厳しいスキームは、幾何学的制約に厳密に固執しつつ、より広い範囲の幾何学的多様性を持つ翼を生産する。
論文 参考訳(メタデータ) (2022-05-05T05:58:08Z) - A Level Set Theory for Neural Implicit Evolution under Explicit Flows [102.18622466770114]
暗黙の曲面をパラメータ化するコーディネートベースのニューラルネットワークは、幾何学の効率的な表現として登場した。
このような暗黙の面に三角形メッシュに対して定義された変形操作を適用することができるフレームワークを提案する。
提案手法は, 表面平滑化, 平均曲率流, 逆レンダリング, 暗黙的幾何によるユーザ定義編集など, 応用性の向上を示す。
論文 参考訳(メタデータ) (2022-04-14T17:59:39Z) - Elastic shape analysis of surfaces with second-order Sobolev metrics: a
comprehensive numerical framework [11.523323270411959]
本稿では3次元表面形状解析のための数値的手法を提案する。
本研究では、3次元メッシュとして表されるパラメータ化面と非パラメータ化面の間の測地線と測地線距離の計算に対処する。
論文 参考訳(メタデータ) (2022-04-08T18:19:05Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - From Planes to Corners: Multi-Purpose Primitive Detection in Unorganized
3D Point Clouds [59.98665358527686]
直交平面の分割自由結合推定法を提案する。
このような統合されたシーン探索は、セマンティックプレーンの検出や局所的およびグローバルなスキャンアライメントといった、多目的のアプリケーションを可能にする。
本実験は,壁面検出から6次元トラッキングに至るまで,様々なシナリオにおいて,我々のアプローチの有効性を実証するものである。
論文 参考訳(メタデータ) (2020-01-21T06:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。