論文の概要: Preconditioning for Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2402.00531v1
- Date: Thu, 1 Feb 2024 11:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 15:23:15.626338
- Title: Preconditioning for Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークのプレコンディショニング
- Authors: Songming Liu, Chang Su, Jiachen Yao, Zhongkai Hao, Hang Su, Youjia Wu,
Jun Zhu
- Abstract要約: PINNの病態を診断・緩和するための指標として条件数を用いることを提案する。
我々は,条件数がPINNの誤差制御と収束の両方にどのように関係しているかを明らかにするための定理を証明した。
条件数を改善するためにプレコンディショニングを利用するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 25.697465351286564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have shown promise in solving
various partial differential equations (PDEs). However, training pathologies
have negatively affected the convergence and prediction accuracy of PINNs,
which further limits their practical applications. In this paper, we propose to
use condition number as a metric to diagnose and mitigate the pathologies in
PINNs. Inspired by classical numerical analysis, where the condition number
measures sensitivity and stability, we highlight its pivotal role in the
training dynamics of PINNs. We prove theorems to reveal how condition number is
related to both the error control and convergence of PINNs. Subsequently, we
present an algorithm that leverages preconditioning to improve the condition
number. Evaluations of 18 PDE problems showcase the superior performance of our
method. Significantly, in 7 of these problems, our method reduces errors by an
order of magnitude. These empirical findings verify the critical role of the
condition number in PINNs' training.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、様々な偏微分方程式(PDE)の解法において有望であることを示す。
しかし、トレーニング病理はPINNの収束と予測精度に悪影響を及ぼし、実用性はさらに制限されている。
本稿では,pinnの病態を診断し緩和するための指標として条件番号を用いることを提案する。
条件数が感度と安定性を測定する古典的な数値解析に触発され,ピンのトレーニングダイナミクスにおいて重要な役割を担っている。
我々は,条件数とPINNの誤差制御と収束の関係を明らかにするための定理を証明した。
次に,プレコンディショニングを利用して条件数を改善するアルゴリズムを提案する。
18PDE問題の評価は,本手法の優れた性能を示す。
これらの問題の7つにおいて,本手法は誤差を桁違いに低減する。
これらの経験的知見は, PINN訓練における条件数の重要性を検証した。
関連論文リスト
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - Numerical analysis of physics-informed neural networks and related
models in physics-informed machine learning [18.1180892910779]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式の前方および逆問題の数値シミュレーションのアルゴリズムとして近年広く普及している。
PINNによるPDEの近似における誤差の様々な成分の分析を効果的に行うことができる統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-01-30T10:43:27Z) - Neural tangent kernel analysis of PINN for advection-diffusion equation [0.0]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解を数値的に近似する
PINNは、クローズドフォーム解析ソリューションが利用可能である単純なケースでも苦労することが知られている。
この研究は、ニューラル・タンジェント・カーネル(NTK)理論を用いた線形対流拡散方程式(LAD)に対するPINNの体系的解析に焦点をあてる。
論文 参考訳(メタデータ) (2022-11-21T18:35:14Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Physical Activation Functions (PAFs): An Approach for More Efficient
Induction of Physics into Physics-Informed Neural Networks (PINNs) [0.0]
物理アクティベーション関数(PAF)は、より複雑さが小さく、より長い範囲の予測に対してより妥当性の高い物理インフォームドニューラルネットワーク(PINN)を生成するのに役立つ。
PAFは、PDEシステムの初期条件や境界条件のような調査現象に関連する数学的公式にインスピレーションを与えることができる。
PAFの使用は、より複雑なPINNを生成するのに役立ち、より長い範囲の予測に対してより有効である、と結論付けている。
論文 参考訳(メタデータ) (2022-05-29T11:26:46Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Robust Learning of Physics Informed Neural Networks [2.86989372262348]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式の解法に有効であることが示されている。
本稿では、PINNがトレーニングデータのエラーに敏感であり、これらのエラーをPDEの解領域上で動的に伝播させるのに過度に適合していることを示す。
論文 参考訳(メタデータ) (2021-10-26T00:10:57Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。