論文の概要: Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
- arxiv url: http://arxiv.org/abs/2505.06459v2
- Date: Wed, 04 Jun 2025 00:12:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:48.996433
- Title: Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
- Title(参考訳): 誤差境界と解束を用いた物理インフォームニューラルネットワークの不確かさの定量化
- Authors: Pablo Flores, Olga Graf, Pavlos Protopapas, Karim Pichara,
- Abstract要約: 我々は、PINNが提供する微分方程式系の解に関する不確実性を提供するベイズニューラルネットワークを訓練する。
我々はPINN上で利用可能な誤差境界を用いて不確実性推定を改善する不確定分散を定式化する。
- 参考スコア(独自算出の注目度): 2.066173485843472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have been widely used to obtain solutions to various physical phenomena modeled as Differential Equations. As PINNs are not naturally equipped with mechanisms for Uncertainty Quantification, some work has been done to quantify the different uncertainties that arise when dealing with PINNs. In this paper, we use a two-step procedure to train Bayesian Neural Networks that provide uncertainties over the solutions to differential equation systems provided by PINNs. We use available error bounds over PINNs to formulate a heteroscedastic variance that improves the uncertainty estimation. Furthermore, we solve forward problems and utilize the obtained uncertainties when doing parameter estimation in inverse problems in cosmology.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は微分方程式としてモデル化された様々な物理現象の解を得るために広く用いられている。
PINNは不確実性定量化のメカニズムを自然に備えていないため、PINNを扱う際に生じる様々な不確実性を定量化するためにいくつかの研究がなされている。
本稿では,2段階の手法を用いてベイズニューラルネットワークを訓練し,PINNによる微分方程式系の解に対する不確実性を提供する。
我々はPINN上で利用可能な誤差境界を用いて不確実性推定を改善する不確定分散を定式化する。
さらに、宇宙論における逆問題においてパラメータ推定を行う際に、前方問題の解法と得られた不確実性を利用する。
関連論文リスト
- PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks [0.0]
物理インフォームドニューラルネットワーク(PINN)は、そのような問題を解決する効果的なツールとして登場した。
本稿では,学習過程を制約付き微分最適化問題として再構成することで,これらの制約に対処する訓練パラダイムであるPINNverseを紹介する。
物理・生物学の4つの古典的ODEおよびPDEモデルにおいて,ノイズデータから頑健かつ正確なパラメータ推定を行う。
論文 参考訳(メタデータ) (2025-04-07T16:34:57Z) - Conformalized Physics-Informed Neural Networks [0.8437187555622164]
本稿では,C-PINN(Conformalized PINN)を導入し,PINNの不確実性を定量化する。
C-PINNは、共形予測の枠組みを利用して、PINNの不確実性を定量化する。
論文 参考訳(メタデータ) (2024-05-13T18:45:25Z) - Correcting model misspecification in physics-informed neural networks
(PINNs) [2.07180164747172]
本稿では,制御方程式の発見のために,PINNにおいて不特定な物理モデルを修正するための一般的な手法を提案する。
我々は、不完全モデルと観測データとの差をモデル化するために、他のディープニューラルネットワーク(DNN)を使用します。
提案手法は, 物理化学的, 生物学的プロセスがよく理解されていない問題における支配方程式の発見に, PINNの応用を拡大すると考えられる。
論文 参考訳(メタデータ) (2023-10-16T19:25:52Z) - Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian
Physics-Informed Neural Networks [2.569295887779268]
不確実性定量化(UQ)は、PINNの文脈で現れ始めている。
本稿では,B-PINNと未知の真の解との相違を考慮したベイズPINN(B-PINN)におけるUQフレームワークを提案する。
線形力学系におけるPINNの誤差境界に関する最近の結果を利用して、線形ODEのクラスにおける予測の不確かさを実証する。
論文 参考訳(メタデータ) (2022-12-14T01:15:26Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。