論文の概要: An approach to automated videogame beta testing
- arxiv url: http://arxiv.org/abs/2402.04938v1
- Date: Wed, 7 Feb 2024 15:16:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 14:51:06.458805
- Title: An approach to automated videogame beta testing
- Title(参考訳): 自動ゲームベータテストへのアプローチ
- Authors: Jennifer Hern\'andez-B\'ecares, Luis Costero, Pedro Pablo
G\'omez-Mart\'in
- Abstract要約: 1970年代と1980年代に開発されたビデオゲームは、一人の人によって数ヶ月で作られた控えめなプログラムであった。
現在、AAAゲーム開発には、数年にわたって何百人もの人々が協力している。
- 参考スコア(独自算出の注目度): 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Videogames developed in the 1970s and 1980s were modest programs created in a
couple of months by a single person, who played the roles of designer, artist
and programmer. Since then, videogames have evolved to become a multi-million
dollar industry. Today, AAA game development involves hundreds of people
working together over several years. Management and engineering requirements
have changed at the same pace. Although many of the processes have been adapted
over time, this is not quite true for quality assurance tasks, which are still
done mainly manually by human beta testers due to the specific peculiarities of
videogames. This paper presents an approach to automate this beta testing.
- Abstract(参考訳): 1970年代と1980年代に開発されたビデオゲームは、デザイナー、アーティスト、プログラマの役割を担った1人の人物によって数ヶ月の間に作られた控えめなプログラムであった。
それ以来、ビデオゲームは数百万ドル産業へと発展してきた。
現在、AAAゲーム開発には、数年にわたって何百人もの人々が協力している。
管理とエンジニアリングの要件は同じペースで変わりました。
多くのプロセスは時間をかけて適応されてきたが、これは品質保証タスクには当てはまらない。
本稿では,このベータテストを自動化するアプローチを提案する。
関連論文リスト
- Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
IDGEプロジェクトは、大規模言語モデルで自由形式のゲーム記述を追従し、ゲームプレイプロセスを生成することにより、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオへの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
我々の最初の進歩はポーカーのIDGEの開発であり、これは幅広いポーカーの変種をサポートするだけでなく、自然言語入力を通じて高度に個別化された新しいポーカーゲームを可能にする。
論文 参考訳(メタデータ) (2024-10-17T11:16:27Z) - Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
本稿では,テストの失敗の原因となるコードの変更を自動的に識別する手法を提案する。
このメソッドは、LLM(Large Language Models)を利用して、エラーメッセージと対応するコード変更を関連付ける。
当社のアプローチは新たに作成したデータセットで71%の精度に達しています。
論文 参考訳(メタデータ) (2024-06-11T09:21:50Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
IDGEプロジェクトは、大規模な言語モデルが自由形式のゲームルールに従うことを可能にすることで、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオに対するモデルの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
私たちの最初の進歩は、汎用的なカードゲームであるPoker用のIDGEを開発することです。
論文 参考訳(メタデータ) (2024-03-30T08:02:16Z) - Deriving and Evaluating a Detailed Taxonomy of Game Bugs [2.2136561577994858]
この研究の目的は、ゲーム開発者がバグに耐性のあるゲームを開発するのに役立つバグ分類を提供することだ。
ゲーム開発業界で発生したバグを報告した189件(学術文献78件,灰色111件)の資料の中から,436件の資料を分析し,MLR(Multivocal Literature Review)を行った。
MLRにより、エンドユーザーの視点から63のゲームバグカテゴリの詳細な分類を確定することができた。
論文 参考訳(メタデータ) (2023-11-28T09:51:42Z) - PlayTest: A Gamified Test Generator for Games [11.077232808482128]
Playtestは、タイリングテストプロセスを目的のある競争ゲームに変換する。
プレイテストフェーズでは,プレイテストの段階において,プレイヤーがツールを介して各ゲームにアクセスできるようにすることで,ゲームテストのタスクをクラウドソーシングするために,Playtestを使用することを想定する。
論文 参考訳(メタデータ) (2023-10-30T10:14:27Z) - BDD-Based Framework with RL Integration: An approach for videogames
automated testing [0.0]
ビデオゲームのテストは、従来のソフトウェア開発のプラクティスとは異なる。
振る舞い駆動開発(BDD)と強化学習(RL)の統合を提案する。
論文 参考訳(メタデータ) (2023-10-08T20:05:29Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
本稿では,既存の自動ゲームテストソリューションに,スクリプト型ボットをベースとして,実験的な強化学習システムを追加する取り組みについて述べる。
ゲーム制作において強化学習を活用するためのユースケースを示し、ゲームのために同じ旅をしたいと思う人なら誰でも遭遇する最大の時間をカバーしています。
我々は、機械学習、特にゲーム生産において効果的なツールである強化学習を作るのに価値があり、必要であると考えるいくつかの研究指針を提案する。
論文 参考訳(メタデータ) (2023-07-19T18:19:23Z) - Automated Play-Testing Through RL Based Human-Like Play-Styles
Generation [0.0]
強化学習は、ビデオゲームのテストを自動化する必要性に対する有望な答えである。
CARMI: aを提示します。
入力として相対測度を持つエージェント。
以前は目に見えないレベルであっても、プレイヤーのプレースタイルをエミュレートできるエージェント。
論文 参考訳(メタデータ) (2022-11-29T14:17:20Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Software Engineering For Automated Game Design [0.19036571490366497]
自動ゲームデザインシステムのゲーム理解能力に対するソフトウェア工学的意思決定の影響について検討する。
ゲーム開発者が自動ゲームデザイナから完全に恩恵を受けるためには,ソフトウェアエンジニアリングに対する新たなアプローチが必要だ,と我々は主張する。
論文 参考訳(メタデータ) (2020-04-03T20:56:51Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
本稿では,MMOにインスパイアされたマルチエージェントゲーム環境であるNeural MMOを紹介する。
分散インフラストラクチャとゲームIOという,AI研究のためのマルチエージェントシステムエンジニアリングにおける,より一般的な2つの課題について論じる。
論文 参考訳(メタデータ) (2020-01-31T18:50:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。