論文の概要: Estimating the history of a random recursive tree
- arxiv url: http://arxiv.org/abs/2403.09755v3
- Date: Mon, 16 Dec 2024 09:20:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:51:57.257694
- Title: Estimating the history of a random recursive tree
- Title(参考訳): ランダム再帰木の歴史を推定する
- Authors: Simon Briend, Christophe Giraud, Gábor Lugosi, Déborah Sulem,
- Abstract要約: ヨルダン中心度尺度に基づく順序推定器を提案する。
提案した推定器が次数ベースおよびスペクトル順序付け法より優れていることを数値的に示す。
- 参考スコア(独自算出の注目度): 5.424799109837066
- License:
- Abstract: This paper studies the problem of estimating the order of arrival of the vertices in a random recursive tree. Specifically, we study two fundamental models: the uniform attachment model and the linear preferential attachment model. We propose an order estimator based on the Jordan centrality measure and define a family of risk measures to quantify the quality of the ordering procedure. Moreover, we establish a minimax lower bound for this problem, and prove that the proposed estimator is nearly optimal. Finally, we numerically demonstrate that the proposed estimator outperforms degree-based and spectral ordering procedures.
- Abstract(参考訳): 本稿では,ランダム再帰木における頂点の到着順序を推定する問題について検討する。
具体的には,一様アタッチメントモデルと線形優先アタッチメントモデルという2つの基本モデルについて検討する。
そこで我々は,ヨルダン中央度尺度に基づく順序推定器を提案し,注文手順の品質を定量化するためのリスク対策のファミリーを定義する。
さらに、この問題に対してミニマックス下界を確立し、提案した推定器がほぼ最適であることを証明した。
最後に,提案手法が次数ベースおよびスペクトル順序付け法より優れていることを示す。
関連論文リスト
- Maximum a Posteriori Estimation for Linear Structural Dynamics Models Using Bayesian Optimization with Rational Polynomial Chaos Expansions [0.01578888899297715]
本稿では,MAP推定のための既存のスパースベイズ学習手法の拡張を提案する。
ベイズ最適化手法を導入し,実験設計を適応的に強化する。
疎性誘導学習と実験設計を組み合わせることで,モデル評価の回数を効果的に削減する。
論文 参考訳(メタデータ) (2024-08-07T06:11:37Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Online Multi-Agent Decentralized Byzantine-robust Gradient Estimation [62.997667081978825]
本アルゴリズムは,同時摂動,セキュアな状態推定,2時間スケール近似に基づく。
また,数値実験によるアルゴリズムの性能も示す。
論文 参考訳(メタデータ) (2022-09-30T07:29:49Z) - A Unified Framework for Estimation of High-dimensional Conditional
Factor Models [0.0]
本稿では,核ノルム正規化による高次元条件因子モデル推定のための一般的な枠組みを開発する。
推定器の大規模なサンプル特性を確立し、推定器を見つけるための効率的な計算アルゴリズムを提供する。
そこで本手法を適用して,各米国株の収益率の断面分析を行い,同質性を付与することで,モデル外乱予測可能性の向上が期待できることを示した。
論文 参考訳(メタデータ) (2022-09-01T12:10:29Z) - Distributionally Robust Parametric Maximum Likelihood Estimation [13.09499764232737]
パラメトリックな名目分布に対して,最悪の場合のログロスを均一に最小化する,分布的に頑健な最大確率推定器を提案する。
我々の新しい頑健な推定器は、統計的整合性も享受し、回帰と分類の両方に有望な実験結果を提供する。
論文 参考訳(メタデータ) (2020-10-11T19:05:49Z) - Learning Minimax Estimators via Online Learning [55.92459567732491]
確率分布のパラメータを推定するミニマックス推定器を設計する際の問題点を考察する。
混合ケースナッシュ平衡を求めるアルゴリズムを構築した。
論文 参考訳(メタデータ) (2020-06-19T22:49:42Z) - Nonparametric Estimation of the Fisher Information and Its Applications [82.00720226775964]
本稿では,大きさn$のランダムサンプルからフィッシャー情報の位置推定の問題について考察する。
Bhattacharyaにより提案された推定器を再検討し、収束率の向上を導出する。
クリッピング推定器と呼ばれる新しい推定器を提案する。
論文 参考訳(メタデータ) (2020-05-07T17:21:56Z) - Low-Rank Matrix Estimation From Rank-One Projections by Unlifted Convex
Optimization [9.492903649862761]
階数1の投影から低階行列を復元するための定式化凸を用いた推定器について検討した。
両モデルにおいて、測定値が$r2 (d+d_$2)以上の場合、推定器は高い確率で成功することを示す。
論文 参考訳(メタデータ) (2020-04-06T14:57:54Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。