論文の概要: Boundary Constraint-free Biomechanical Model-Based Surface Matching for Intraoperative Liver Deformation Correction
- arxiv url: http://arxiv.org/abs/2403.09964v4
- Date: Mon, 17 Mar 2025 15:19:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:56:42.455757
- Title: Boundary Constraint-free Biomechanical Model-Based Surface Matching for Intraoperative Liver Deformation Correction
- Title(参考訳): 肝内変形矯正における境界拘束のない生体力学的モデルに基づく表面マッチング
- Authors: Zixin Yang, Richard Simon, Kelly Merrell, Cristian. A. Linte,
- Abstract要約: 画像ガイド下肝手術において, 3D-3D非剛性登録法は, 点雲として表される術前モデルと術中表面のマッピングを推定する上で重要な役割を担っている。
修正されたFEMを表面マッチング項に組み込んだ3D-3D非剛性登録法を提案する。
- 参考スコア(独自算出の注目度): 0.6249768559720122
- License:
- Abstract: In image-guided liver surgery, 3D-3D non-rigid registration methods play a crucial role in estimating the mapping between the preoperative model and the intraoperative surface represented as point clouds, addressing the challenge of tissue deformation. Typically, these methods incorporate a biomechanical model, represented as a finite element model (FEM), into the strain energy term to regularize a surface matching term. We propose a 3D-3D non-rigid registration method that incorporates a modified FEM into the surface matching term. The modified FEM alleviates the need to specify boundary conditions, which is achieved by modifying the stiffness matrix of a FEM and using diagonal loading for stabilization. As a result, the modified surface matching term does not require the specification of boundary conditions or an additional strain energy term to regularize the surface matching term. Optimization is achieved through an accelerated gradient algorithm, further enhanced by our proposed method for determining the optimal step size. We evaluated our method and compared it to several state-of-the-art methods across various datasets. Our straightforward and effective approach consistently outperformed or achieved comparable performance to the state-of-the-art methods. Our code and datasets are available at https://github.com/zixinyang9109/BCF-FEM.
- Abstract(参考訳): 画像ガイド下肝手術において, 3D-3D非剛性登録法は, 術前モデルと術中表面を点群としてマッピングし, 組織変形の課題に対処する上で重要な役割を担っている。
通常、これらの手法は有限要素モデル(FEM)として表される生体力学モデルをひずみエネルギー項に組み込んで表面整合項を正則化する。
修正されたFEMを表面マッチング項に組み込んだ3D-3D非剛性登録法を提案する。
修正されたFEMは、FEMの剛性行列を変更し、安定化のために対角荷重を使用することにより達成される境界条件を特定する必要性を緩和する。
その結果、表面整合項は境界条件の指定や、表面整合項を正則化するための追加のひずみエネルギー項を必要としない。
最適化は高速化された勾配アルゴリズムにより達成され、提案手法によりさらに拡張され、最適ステップサイズが決定される。
提案手法の評価と,各種データセットを対象とした最先端手法との比較を行った。
我々の単純で効果的なアプローチは、最先端の手法に匹敵するパフォーマンスを一貫して上回り、達成しました。
私たちのコードとデータセットはhttps://github.com/zixinyang9109/BCF-FEMで公開されています。
関連論文リスト
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
医用画像からの心臓解剖のメッシュ再構築は, 形状, 運動計測, 生体物理シミュレーションに有用である。
従来のボクセルベースのアプローチは、イメージの忠実さを損なう前処理と後処理に依存している。
そこで本稿では,メッシュのスライスからメッシュへの勾配バックプロパゲーションを可能にする,新しい識別可能なボキセル化とスライシング(DVS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T17:19:31Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
3次元点雲の正規推定は3次元幾何処理の基本的な課題である。
我々は,ニューラルネットワークが入力点雲に適合することを奨励する,ニューラルグラデーション関数の学習のための新しいパラダイムを導入する。
広範に使用されているベンチマークの優れた結果から,本手法は非指向性および指向性正常推定タスクにおいて,より正確な正規性を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-01T09:25:29Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
実世界のシナリオにおける6次元オブジェクトポーズ推定のためのSE(3)拡散モデルに基づく点クラウド登録フレームワークを提案する。
提案手法は,3次元登録タスクをデノナイズ拡散過程として定式化し,音源雲の姿勢を段階的に洗練する。
実世界のTUD-L, LINEMOD, およびOccluded-LINEMODデータセットにおいて, 拡散登録フレームワークが顕著なポーズ推定性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-26T12:47:26Z) - Unsupervised diffeomorphic cardiac image registration using
parameterization of the deformation field [6.343400988017304]
本研究では,移動メッシュパラメータ化に基づくエンドツーエンドの非教師付き微分同相変形型登録フレームワークを提案する。
提案手法の有効性を,2次元および3次元心臓MRIスキャンを含む3つの異なるデータセット上で評価することにより検討した。
論文 参考訳(メタデータ) (2022-08-28T19:34:10Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
未知視トモグラフィ(UVT)は、未知のランダムな向きで2次元投影から3次元密度マップを再構成する。
提案したOMRはより堅牢で、従来の最先端のOMRアプローチよりも大幅に性能が向上している。
論文 参考訳(メタデータ) (2022-07-06T21:40:59Z) - InsMix: Towards Realistic Generative Data Augmentation for Nuclei
Instance Segmentation [29.78647170035808]
本稿では,コピック・ペースト・スムース原理に従って,核セグメンテーションのための現実的なデータ拡張手法InsMixを提案する。
具体的には、拡張画像が原子核に関する豪華な情報を取得することができる形態的制約を提案する。
背景の画素冗長性をフル活用するために,背景パッチをランダムにシャッフルする背景摂動法を提案する。
論文 参考訳(メタデータ) (2022-06-30T08:58:05Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
画像やスキャンに適合する3次元人体モデルのための新しい最適化手法を提案する。
われわれのアプローチは、非常に異なる体型を持つ服を着た人々の基盤となる身体を捉えることができ、最先端技術と比べて大きな改善を達成できる。
LVDはまた、人間と手の3次元モデル適合にも適用でき、よりシンプルで高速な方法でSOTAに大きな改善が示される。
論文 参考訳(メタデータ) (2022-05-12T17:55:51Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Intraoperative Liver Surface Completion with Graph Convolutional VAE [10.515163959186964]
我々は、データセットの限られたサイズを補うために、周波数領域の形状をランダムに摂動する新しいデータ拡張手法を導入する。
本手法のコアは変分オートエンコーダ (VAE) で, 肝臓の完全な形状を学習するための潜伏空間を訓練する。
この最適化の効果は、初期生成した形状の進行非剛性変形である。
論文 参考訳(メタデータ) (2020-09-08T17:19:31Z) - A Coupled Manifold Optimization Framework to Jointly Model the
Functional Connectomics and Behavioral Data Spaces [5.382679710017696]
本稿では,コホートに共通する低次元行列多様体にfMRIデータを投影する結合多様体最適化フレームワークを提案する。
患者固有の負荷は、同時に第2の非線形多様体を介して、興味の行動尺度にマップされる。
自閉症スペクトラム障害58例の安静時fMRIの枠組みを検証した。
論文 参考訳(メタデータ) (2020-07-03T20:12:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。