論文の概要: AI Sustainability in Practice Part One: Foundations for Sustainable AI Projects
- arxiv url: http://arxiv.org/abs/2403.14635v1
- Date: Mon, 19 Feb 2024 22:52:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:52:54.856103
- Title: AI Sustainability in Practice Part One: Foundations for Sustainable AI Projects
- Title(参考訳): 実践におけるAIサステナビリティ その1:サステナブルなAIプロジェクトのための基盤
- Authors: David Leslie, Cami Rincon, Morgan Briggs, Antonella Perini, Smera Jayadeva, Ann Borda, SJ Bennett, Christopher Burr, Mhairi Aitken, Michael Katell, Claudia Fischer, Janis Wong, Ismael Kherroubi Garcia,
- Abstract要約: AIプロジェクトは、変革的な効果と、個人や社会に対する短期的、中長期的影響に反応する。
このワークブックは、AIサステナビリティを実践するために必要な概念とツールを提供する、ペアの最初の部分です。
- 参考スコア(独自算出の注目度): 0.46671368497079174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sustainable AI projects are continuously responsive to the transformative effects as well as short-, medium-, and long-term impacts on individuals and society that the design, development, and deployment of AI technologies may have. Projects, which centre AI Sustainability, ensure that values-led, collaborative, and anticipatory reflection both guides the assessment of potential social and ethical impacts and steers responsible innovation practices. This workbook is the first part of a pair that provides the concepts and tools needed to put AI Sustainability into practice. It introduces the SUM Values, which help AI project teams to assess the potential societal impacts and ethical permissibility of their projects. It then presents a Stakeholder Engagement Process (SEP), which provides tools to facilitate proportionate engagement of and input from stakeholders with an emphasis on equitable and meaningful participation and positionality awareness.
- Abstract(参考訳): 持続可能なAIプロジェクトは、AI技術の設計、開発、展開が持つ可能性のある個人や社会に対する短期的、中長期的影響と同様に、変革的な影響に継続的に反応する。
AIサステナビリティを中心とするプロジェクトは、価値を主導し、協調し、予想される反映を確実にすることで、潜在的な社会的および倫理的影響の評価を導き、イノベーションの実践に責任を負う。
このワークブックは、AIサステナビリティを実践するために必要な概念とツールを提供する、ペアの最初の部分です。
SUM Valuesを導入し、AIプロジェクトチームがプロジェクトの潜在的な社会的影響と倫理的許容性を評価するのに役立つ。
次に、SEP(Stakeholder Engagement Process)を提示し、公平で有意義な参加と位置認識を重視した利害関係者の参加とインプットの比率付けを容易にするツールを提供する。
関連論文リスト
- Integrating ESG and AI: A Comprehensive Responsible AI Assessment Framework [15.544366555353262]
ESG-AIフレームワークは28社の企業との関わりの洞察に基づいて開発された。
これは、AIアプリケーションの環境および社会的影響の概要を提供し、投資家のようなユーザーがAI利用の物質性を評価するのに役立つ。
投資家は、構造化されたエンゲージメントと特定のリスク領域の徹底的な評価を通じて、責任あるAIに対する企業のコミットメントを評価することができる。
論文 参考訳(メタデータ) (2024-08-02T00:58:01Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - AI Sustainability in Practice Part Two: Sustainability Throughout the AI Workflow [0.46671368497079174]
このワークブックは、AIサステナビリティに関する2つのワークブックの一部である。
SIAと活動のテンプレートを提供し、その重要な部分を深く掘り下げることができます。
SIAにおける価値の重み付けとトレードオフを検討する方法について論じる。
論文 参考訳(メタデータ) (2024-02-19T22:58:05Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
本稿は、既存の理論文献を合成して、AI設計における「参加的転換」を掘り下げることを目的としている。
我々は、最近発表された研究および12人のAI研究者および実践者に対する半構造化インタビューの分析に基づいて、AI設計における参加実践の現状に関する実証的な知見を述べる。
論文 参考訳(メタデータ) (2023-10-02T05:30:42Z) - Power to the People? Opportunities and Challenges for Participatory AI [9.504176941117493]
人工知能(AI)と機械学習(ML)への参加的アプローチが勢いを増している。
本稿では,AIとMLパイプライン内の参加者参加手法や実践と同様に,歴史的文脈における参加的アプローチをレビューする。
我々は、参加型AI/MLが流行するにつれて、この用語の文脈的・ニュアンス的な理解と、参加型活動の主要な受益者がもたらす利益と機会を実現する上で重要な要素であるべきかどうかを考察する。
論文 参考訳(メタデータ) (2022-09-15T19:20:13Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - AI and Ethics -- Operationalising Responsible AI [13.781989627894813]
AIに対する公的な信頼の構築と維持が、成功と持続可能なイノベーションの鍵であると認識されている。
この章では、倫理的AI原則の運用に関する課題について論じ、高いレベルの倫理的AI原則をカバーする統合的な見解を提示している。
論文 参考訳(メタデータ) (2021-05-19T00:55:40Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Leveraging traditional ecological knowledge in ecosystem restoration
projects utilizing machine learning [77.34726150561087]
生態系修復プロジェクトの段階におけるコミュニティの関与は、コミュニティの健康改善に寄与する可能性がある。
適応的でスケーラブルなプラクティスは、エコシステム的なML修復プロジェクトのすべての段階において、学際的なコラボレーションを動機付けることができることを示唆している。
論文 参考訳(メタデータ) (2020-06-22T16:17:48Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
本稿では,組織文化と構造がAI実践における責任あるイニシアチブの有効性に与える影響を分析するための枠組みについて検討し,提案する。
我々は、業界で働く実践者との半構造化質的なインタビューの結果、共通の課題、倫理的緊張、そして責任あるAIイニシアチブのための効果的なイネーブラーについて調査する。
論文 参考訳(メタデータ) (2020-06-22T15:57:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。