論文の概要: A Pretraining-Finetuning Computational Framework for Material Homogenization
- arxiv url: http://arxiv.org/abs/2404.07943v2
- Date: Wed, 26 Mar 2025 17:52:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 20:08:03.008969
- Title: A Pretraining-Finetuning Computational Framework for Material Homogenization
- Title(参考訳): 材料均質化のための事前学習型計算フレームワーク
- Authors: Yizheng Wang, Xiang Li, Ziming Yan, Shuaifeng Ma, Jinshuai Bai, Bokai Liu, Timon Rabczuk, Yinghua Liu,
- Abstract要約: 均質化(homogenization)は、多スケールの物理現象を研究するための基本的なツールである。
本稿では,事前学習と微調整という2つのフェーズからなる新しい数値均質化フレームワークであるPreFine-Homoを提案する。
PreFine-Homoの事前学習フェーズは、従来の方法よりも1000倍高速な均質化を実現し、微調整フェーズは精度をさらに向上させる。
- 参考スコア(独自算出の注目度): 3.357182686320527
- License:
- Abstract: Homogenization is a fundamental tool for studying multiscale physical phenomena. Traditional numerical homogenization methods, heavily reliant on finite element analysis, demand significant computational resources, especially for complex geometries, materials, and high-resolution problems. To address these challenges, we propose PreFine-Homo, a novel numerical homogenization framework comprising two phases: pretraining and fine-tuning. In the pretraining phase, a Fourier Neural Operator (FNO) is trained on large datasets to learn the mapping from input geometries and material properties to displacement fields. In the fine-tuning phase, the pretrained predictions serve as initial solutions for iterative algorithms, drastically reducing the number of iterations needed for convergence. The pretraining phase of PreFine-Homo delivers homogenization results up to 1000 times faster than conventional methods, while the fine-tuning phase further enhances accuracy. Moreover, the fine-tuning phase grants PreFine-Homo unlimited generalization capabilities, enabling continuous learning and improvement as data availability increases. We validate PreFine-Homo by predicting the effective elastic tensor for 3D periodic materials, specifically Triply Periodic Minimal Surfaces (TPMS). The results demonstrate that PreFine-Homo achieves high precision, exceptional efficiency, robust learning capabilities, and strong extrapolation ability, establishing it as a powerful tool for multiscale homogenization tasks.
- Abstract(参考訳): 均質化(homogenization)は、多スケールの物理現象を研究するための基本的なツールである。
従来の数値均質化法は有限要素解析に大きく依存しており、特に複雑な測地、材料、高分解能問題に対して重要な計算資源を必要とする。
これらの課題に対処するために,プレトレーニングと微調整という2つのフェーズからなる新しい数値均質化フレームワークであるPreFine-Homoを提案する。
プレトレーニングフェーズでは、FNO(Fourier Neural Operator)が大規模なデータセット上でトレーニングされ、入力されたジオメトリと材料特性から変位場へのマッピングを学習する。
微調整の段階では、事前訓練された予測は反復アルゴリズムの初期解として機能し、収束に必要なイテレーションの数を劇的に削減する。
PreFine-Homoの事前学習フェーズは、従来の方法よりも最大1000倍高速な均質化を実現し、微調整フェーズは精度をさらに向上させる。
さらに、微調整フェーズはPreFine-Homoを無制限に一般化する機能を与え、データの可用性が向上するにつれて継続的学習と改善を可能にする。
我々は,3次元周期材料,特にTriply Periodic Minimal Surfaces (TPMS) の有効弾性テンソルを予測してPreFine-Homoを検証する。
その結果,PreFine-Homoは高い精度,例外的効率,頑健な学習能力,強力な外挿能力を実現し,マルチスケール均質化タスクの強力なツールとして確立した。
関連論文リスト
- Finding the Underlying Viscoelastic Constitutive Equation via Universal Differential Equations and Differentiable Physics [1.03121181235382]
本研究は、微分物理学と粘弾性流体を併用した普遍微分方程式(UDE)を用いる。
本研究は, 上対流マックスウェル (UCM) , ジョンソン・セガルマン (Johnson-Segalman) , ギーゼクス (Giesekus) および指数パン・テン・タンナー (Exponential Phan-Thien-Tanner, ePTT) の4つの粘弾性モデルの解析に焦点をあてる。
論文 参考訳(メタデータ) (2024-12-31T17:34:29Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
マルチスケールの均質化手法は、非弾性材料のマクロ力学的挙動の信頼性と正確な予測を行うためにしばしば用いられる。
ディープラーニングに基づくデータ駆動型アプローチは、アドホックな法則や高速な数値手法に代わる、有望な代替手段として台頭している。
本稿では,非弾性・複雑な構造を持つ機械材料のモデリングのための熱力学に基づくニューラルネットワーク(TANN)を提案する。
論文 参考訳(メタデータ) (2021-08-30T11:50:38Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z) - Polyconvex anisotropic hyperelasticity with neural networks [1.7616042687330642]
有限変形に対する凸機械学習に基づくモデルを提案する。
モデルは立方体格子メタマテリアルの非常に困難なシミュレーションデータで校正される。
データアプローチのデータは、機械的な考慮に基づいており、追加の実験やシミュレーション機能を必要としない。
論文 参考訳(メタデータ) (2021-06-20T15:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。