論文の概要: Computing distances and means on manifolds with a metric-constrained Eikonal approach
- arxiv url: http://arxiv.org/abs/2404.08754v1
- Date: Fri, 12 Apr 2024 18:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:52:17.697515
- Title: Computing distances and means on manifolds with a metric-constrained Eikonal approach
- Title(参考訳): 距離制約のあるアイコニカルアプローチによる多様体上の距離と平均の計算
- Authors: Daniel Kelshaw, Luca Magri,
- Abstract要約: 距離関数の連続かつ微分可能な表現を得るために,距離制約付きアイコンソルバを導入する。
これらの表現の微分可能な性質は、多様体上の大域的長さ最小化パスの直接計算を可能にする。
- 参考スコア(独自算出の注目度): 4.266376725904727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computing distances on Riemannian manifolds is a challenging problem with numerous applications, from physics, through statistics, to machine learning. In this paper, we introduce the metric-constrained Eikonal solver to obtain continuous, differentiable representations of distance functions on manifolds. The differentiable nature of these representations allows for the direct computation of globally length-minimising paths on the manifold. We showcase the use of metric-constrained Eikonal solvers for a range of manifolds and demonstrate the applications. First, we demonstrate that metric-constrained Eikonal solvers can be used to obtain the Fr\'echet mean on a manifold, employing the definition of a Gaussian mixture model, which has an analytical solution to verify the numerical results. Second, we demonstrate how the obtained distance function can be used to conduct unsupervised clustering on the manifold -- a task for which existing approaches are computationally prohibitive. This work opens opportunities for distance computations on manifolds.
- Abstract(参考訳): リーマン多様体上の計算距離は、物理学、統計学、機械学習など多くの応用において難しい問題である。
本稿では,距離関数の連続的微分可能表現を得るために,距離制約付きアイコンソルバを導入する。
これらの表現の微分可能な性質は、多様体上の大域的長さ最小化パスの直接計算を可能にする。
距離制約付きアイコンソルバを多様体の範囲で使用し,その応用を実証する。
まず, 解析解を持つガウス混合モデルの定義を用いて, 計量制約付きアイコン解法を用いて多様体上のFr'echet平均値を得ることを示した。
第二に、得られた距離関数が多様体上の教師なしクラスタリング(既存のアプローチが計算的に禁止されているタスク)の実行にどのように使用できるかを示す。
この研究は多様体上の距離計算の機会を開放する。
関連論文リスト
- Reconstructing the Geometry of Random Geometric Graphs [9.004991291124096]
ランダム幾何学グラフは、距離空間上で定義されたランダムグラフモデルである。
サンプルグラフから基底空間の幾何を効率的に再構成する方法を示す。
論文 参考訳(メタデータ) (2024-02-14T21:34:44Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
フービニ・スタディ計量に基づく絡み合い尺度は、Cocchiarellaと同僚によって最近導入された。
本稿では,多モードガウス状態に対する幾何絡み合いの一般化であるガウスエンタングルメント尺度(GEM)を提案する。
自由度の高い系に対する計算可能な多部絡み合わせ測度を提供することにより、自由なボゾン場理論の洞察を得るために、我々の定義が利用できることを示す。
論文 参考訳(メタデータ) (2024-01-31T15:50:50Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - Manifold-augmented Eikonal Equations: Geodesic Distances and Flows on
Differentiable Manifolds [5.0401589279256065]
多様体の幾何学が距離場にどのように影響するかを示し、測地線流を利用して、グローバルな長さ最小曲線を直接得る。
この研究は、微分可能多様体上の統計学と減階モデリングの機会を開放する。
論文 参考訳(メタデータ) (2023-10-09T21:11:13Z) - Short and Straight: Geodesics on Differentiable Manifolds [6.85316573653194]
本研究では,測地線長を最小化するための既存の手法をまず解析する。
次に,連続多様体上の距離場と測地流のモデルに基づくパラメータ化を提案する。
第3に,Ricciスカラーのより大きい値を示す多様体の領域において,曲率に基づくトレーニング機構,サンプリングおよびスケーリングポイントを開発する。
論文 参考訳(メタデータ) (2023-05-24T15:09:41Z) - Manifold Learning by Mixture Models of VAEs for Inverse Problems [1.5749416770494704]
任意の位相の多様体を表現するために,変分オートエンコーダの混合モデルを学習する。
学習多様体に制限されたデータ忠実度項を最小化することにより、逆問題の解法に使用する。
本手法を低次元トイの例に応用し, 脱臭・電気インピーダンストモグラフィーにも応用した。
論文 参考訳(メタデータ) (2023-03-27T14:29:04Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
論文 参考訳(メタデータ) (2022-11-20T19:09:50Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Intrinsic persistent homology via density-based metric learning [1.0499611180329804]
サンプルによって定義される計量空間は、サンプルフェルマー距離(英語版)として知られる計算可能な計量で与えられることが証明される。
制限対象は、人口フェルマ距離が与えられた多様体自身であり、多様体の幾何学とサンプルを生成する密度の両方を測る固有の計量である。
論文 参考訳(メタデータ) (2020-12-11T18:54:36Z) - Disentangling by Subspace Diffusion [72.1895236605335]
データ多様体の完全教師なし分解は、多様体の真の計量が知られている場合、可能であることを示す。
我々の研究は、教師なしメートル法学習が可能であるかどうかという問題を減らし、表現学習の幾何学的性質に関する統一的な洞察を提供する。
論文 参考訳(メタデータ) (2020-06-23T13:33:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。