論文の概要: End-to-End Mesh Optimization of a Hybrid Deep Learning Black-Box PDE Solver
- arxiv url: http://arxiv.org/abs/2404.11766v1
- Date: Wed, 17 Apr 2024 21:49:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:30:32.937159
- Title: End-to-End Mesh Optimization of a Hybrid Deep Learning Black-Box PDE Solver
- Title(参考訳): ハイブリッド深層学習ブラックボックスPDEソルバのエンドツーエンドメッシュ最適化
- Authors: Shaocong Ma, James Diffenderfer, Bhavya Kailkhura, Yi Zhou,
- Abstract要約: 最近の研究では、ディープラーニングを利用して、粗いメッシュ上のPDEソルバによって得られる解を補正するPDE補正フレームワークが提案されている。
このようなPDE補正モデルのエンドツーエンドトレーニングでは、PDEソルバは反復的な数値過程を通じて自動微分をサポートする必要がある。
本研究では,ブラックボックスPDEソルバと流体流予測のためのディープラーニングモデルを用いたハイブリッドモデルのエンドツーエンドトレーニングの実現可能性について検討する。
- 参考スコア(独自算出の注目度): 24.437884270729903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been widely applied to solve partial differential equations (PDEs) in computational fluid dynamics. Recent research proposed a PDE correction framework that leverages deep learning to correct the solution obtained by a PDE solver on a coarse mesh. However, end-to-end training of such a PDE correction model over both solver-dependent parameters such as mesh parameters and neural network parameters requires the PDE solver to support automatic differentiation through the iterative numerical process. Such a feature is not readily available in many existing solvers. In this study, we explore the feasibility of end-to-end training of a hybrid model with a black-box PDE solver and a deep learning model for fluid flow prediction. Specifically, we investigate a hybrid model that integrates a black-box PDE solver into a differentiable deep graph neural network. To train this model, we use a zeroth-order gradient estimator to differentiate the PDE solver via forward propagation. Although experiments show that the proposed approach based on zeroth-order gradient estimation underperforms the baseline that computes exact derivatives using automatic differentiation, our proposed method outperforms the baseline trained with a frozen input mesh to the solver. Moreover, with a simple warm-start on the neural network parameters, we show that models trained by these zeroth-order algorithms achieve an accelerated convergence and improved generalization performance.
- Abstract(参考訳): 深層学習は計算流体力学における偏微分方程式(PDE)の解法として広く応用されている。
最近の研究では、ディープラーニングを利用して、粗いメッシュ上のPDEソルバによって得られる解を補正するPDE補正フレームワークが提案されている。
しかしながら、メッシュパラメータやニューラルネットワークパラメータといったソルバに依存したパラメータに対して、そのようなPDE補正モデルのエンドツーエンドトレーニングでは、反復的な数値プロセスを通じてPDEソルバが自動微分をサポートする必要がある。
このような機能は、既存の多くの解決ツールでは簡単には利用できない。
本研究では,ブラックボックスPDEソルバと流体流予測のためのディープラーニングモデルを用いたハイブリッドモデルのエンドツーエンドトレーニングの実現可能性について検討する。
具体的には、ブラックボックスPDEソルバを微分可能なディープグラフニューラルネットワークに統合するハイブリッドモデルについて検討する。
このモデルをトレーニングするために、前向きの伝搬によりPDEソルバを区別するために、ゼロ階勾配推定器を用いる。
実験により, ゼロ階勾配推定に基づく提案手法は, 自動微分を用いた精度の高い微分を演算するベースラインを過小評価することを示したが, 提案手法は, 凍結した入力メッシュを用いて学習したベースラインよりも優れた性能を示した。
さらに、ニューラルネットワークパラメータの簡単なウォームスタートにより、これらのゼロ階アルゴリズムで訓練されたモデルが加速収束を実現し、一般化性能が向上することを示す。
関連論文リスト
- A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations [9.588717577573684]
偏微分方程式(PDE)を解くためのスケーラブルな事前条件付き原始ハイブリッド勾配アルゴリズムを提案する。
本稿では,提案手法の性能を,一般的なディープラーニングアルゴリズムと比較する。
その結果,提案手法は効率的かつ堅牢に動作し,安定に収束することが示唆された。
論文 参考訳(メタデータ) (2024-11-09T20:39:10Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Multilevel CNNs for Parametric PDEs [0.0]
偏微分方程式に対する多段階解法の概念とニューラルネットワークに基づくディープラーニングを組み合わせる。
より詳細な理論的解析により,提案アーキテクチャは乗算Vサイクルを任意の精度で近似できることを示した。
最先端のディープラーニングベースの解法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-01T21:11:05Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - PDE-constrained Models with Neural Network Terms: Optimization and
Global Convergence [0.0]
近年の研究では、ディープラーニングを用いて、科学と工学における偏微分方程式(PDE)モデルを開発した。
ニューラルネットワークを用いた線形楕円型PDEの最適化について厳密に研究する。
ニューラルネットワークは,レイノルズ平均ナヴィエ・ストークス方程式の閉包モデルとして機能する流体力学への応用のために,ニューラルネットワークモデルを訓練する。
論文 参考訳(メタデータ) (2021-05-18T16:04:33Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers [26.444103444634994]
認識されたPDEが捉えない効果を補正することにより、機械学習が解の精度を向上させることができることを示す。
従来使用されていた学習手法は,学習ループにソルバを組み込む手法により大幅に性能が向上していることがわかった。
これにより、以前の補正を考慮に入れたリアルな入力分布がモデルに提供される。
論文 参考訳(メタデータ) (2020-06-30T18:00:03Z) - DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
Equations using Finite Volume Discretization [0.7366405857677226]
この研究の目的はMLベースのPDEソルバを開発することであり、既存のPDEソルバと機械学習技術の重要な特徴を結合させることである。
我々のML-ソルバであるDiscretizationNetは、PDE変数を入力と出力の両方の特徴として、生成CNNベースのエンコーダデコーダモデルを採用している。
ML-ゾルバの安定性と収束性を改善するために,ネットワークトレーニング中に新しい反復能力を実装した。
論文 参考訳(メタデータ) (2020-05-17T19:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。