論文の概要: Not a Swiss Army Knife: Academics' Perceptions of Trade-Offs Around Generative Artificial Intelligence Use
- arxiv url: http://arxiv.org/abs/2405.00995v1
- Date: Thu, 2 May 2024 04:25:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:54:29.164908
- Title: Not a Swiss Army Knife: Academics' Perceptions of Trade-Offs Around Generative Artificial Intelligence Use
- Title(参考訳): スイス陸軍のナイフではない
- Authors: Afsaneh Razi, Layla Bouzoubaa, Aria Pessianzadeh, John S. Seberger, Rezvaneh Rezapour,
- Abstract要約: 我々は、教員や学生を含む18人の知識労働者にインタビューを行い、生成AI(Gen AI)の社会的・技術的側面について調査した。
参加者は、Gen AIのトレーニングに使用されるデータの不透明さに関する懸念を提起しました。
参加者は、学習プロセスを加速し、アクセス可能な研究アシスタントとして機能することで、Gen AIが知識を民主化する可能性を認識した。
- 参考スコア(独自算出の注目度): 7.917580802104543
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the rapidly evolving landscape of computing disciplines, substantial efforts are being dedicated to unraveling the sociotechnical implications of generative AI (Gen AI). While existing research has manifested in various forms, there remains a notable gap concerning the direct engagement of knowledge workers in academia with Gen AI. We interviewed 18 knowledge workers, including faculty and students, to investigate the social and technical dimensions of Gen AI from their perspective. Our participants raised concerns about the opacity of the data used to train Gen AI. This lack of transparency makes it difficult to identify and address inaccurate, biased, and potentially harmful, information generated by these models. Knowledge workers also expressed worries about Gen AI undermining trust in the relationship between instructor and student and discussed potential solutions, such as pedagogy readiness, to mitigate them. Additionally, participants recognized Gen AI's potential to democratize knowledge by accelerating the learning process and act as an accessible research assistant. However, there were also concerns about potential social and power imbalances stemming from unequal access to such technologies. Our study offers insights into the concerns and hopes of knowledge workers about the ethical use of Gen AI in educational settings and beyond, with implications for navigating this new landscape.
- Abstract(参考訳): コンピュータ分野の急速な発展の中で、生成的AI(Gen AI)の社会技術的意味を解き放つために、かなりの努力が注がれている。
既存の研究は様々な形で現れてきたが、Gen AIとの学術における知識労働者の直接の関与に関して、注目すべきギャップが残っている。
我々は、教員や学生を含む18人の知識労働者にインタビューを行い、その視点から、Gen AIの社会的・技術的側面について調査した。
参加者は、Gen AIのトレーニングに使用されるデータの不透明さに関する懸念を提起しました。
この透明性の欠如は、これらのモデルによって生成された不正確で偏りがあり、潜在的に有害な情報を識別し、対処することを困難にします。
知識労働者はまた、インストラクターと学生の関係に対する信頼を損なうGen AIに対する懸念を表明し、教育的準備のような潜在的な解決策について議論した。
さらに参加者は、学習プロセスを加速し、アクセス可能な研究アシスタントとして機能することで、Gen AIが知識を民主化する可能性を認識した。
しかし、このような技術への不平等なアクセスから生じる潜在的な社会的・権力不均衡にも懸念があった。
我々の研究は、知識労働者の関心事や、教育現場などにおけるGen AIの倫理的利用に関する希望についての洞察を提供する。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Human-Centric eXplainable AI in Education [0.0]
本稿では,教育現場における人間中心型eXplainable AI(HCXAI)について検討する。
学習成果の向上、ユーザ間の信頼の向上、AI駆動ツールの透明性確保における役割を強調している。
ユーザ理解とエンゲージメントを優先するHCXAIシステムの開発のための包括的なフレームワークを概説する。
論文 参考訳(メタデータ) (2024-10-18T14:02:47Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
本研究は,AI言語モデルに対する教員の経験と態度について考察する。
学習スタイルと生成AIに対する態度の相関は見つからない。
CS教育者は、生成するAIツールの技術的理解にはるかに自信を持っているが、AI生成された仕事を検出する能力にこれ以上自信がない。
論文 参考訳(メタデータ) (2024-03-22T19:21:29Z) - The Ethics of AI in Education [0.0]
人工知能の研究室ベースの科学から生きた人間の文脈への移行は多くの歴史的、社会文化的偏見、不平等、道徳的ジレンマに焦点を合わせている。
AIの幅広い倫理に関する疑問は、教育におけるAI(AIED)にも関係している。
AIEDは、その技術がユーザに与える影響、そのような技術が私たちが学び、教える方法の強化や変更にどのように使われるか、そして私たちが社会や個人として、教育の成果として価値あるものについて、さらなる課題を提起します。
論文 参考訳(メタデータ) (2024-03-22T11:41:37Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。