論文の概要: Data Scoping: Effectively Learning the Evolution of Generic Transport PDEs
- arxiv url: http://arxiv.org/abs/2405.01319v1
- Date: Thu, 2 May 2024 14:24:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 16:15:09.759112
- Title: Data Scoping: Effectively Learning the Evolution of Generic Transport PDEs
- Title(参考訳): データスコーピング:ジェネリックトランスポートPDEの進化を効果的に学ぶ
- Authors: Jiangce Chen, Wenzhuo Xu, Zeda Xu, Noelia Grande Gutiérrez, Sneha Prabha Narra, Christopher McComb,
- Abstract要約: 輸送PDEは、質量、運動量、エネルギー保存を記述する時間依存偏微分方程式(PDE)によって制御される。
ディープラーニングアーキテクチャは、これらのPDEのシミュレーションと根本的に相容れない。
本稿では,局所特性を予測するための情報範囲を制限するために,線形時間複雑性を持つ分散データスコーピング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transport phenomena (e.g., fluid flows) are governed by time-dependent partial differential equations (PDEs) describing mass, momentum, and energy conservation, and are ubiquitous in many engineering applications. However, deep learning architectures are fundamentally incompatible with the simulation of these PDEs. This paper clearly articulates and then solves this incompatibility. The local-dependency of generic transport PDEs implies that it only involves local information to predict the physical properties at a location in the next time step. However, the deep learning architecture will inevitably increase the scope of information to make such predictions as the number of layers increases, which can cause sluggish convergence and compromise generalizability. This paper aims to solve this problem by proposing a distributed data scoping method with linear time complexity to strictly limit the scope of information to predict the local properties. The numerical experiments over multiple physics show that our data scoping method significantly accelerates training convergence and improves the generalizability of benchmark models on large-scale engineering simulations. Specifically, over the geometries not included in the training data for heat transferring simulation, it can increase the accuracy of Convolutional Neural Networks (CNNs) by 21.7 \% and that of Fourier Neural Operators (FNOs) by 38.5 \% on average.
- Abstract(参考訳): 輸送現象(例えば流体の流れ)は、質量、運動量、エネルギー保存を記述した時間依存偏微分方程式(PDE)によって制御され、多くの工学的応用においてユビキタスである。
しかし、ディープラーニングアーキテクチャはこれらのPDEのシミュレーションとは根本的に相容れない。
本論文は, この非互換性を明確化し, 解決するものである。
ジェネリックトランスポートPDEの局所依存性は、次のステップで位置の物理的特性を予測するために、ローカル情報のみを含むことを意味する。
しかし、ディープラーニングアーキテクチャは、レイヤーの数が増えるにつれて、情報の範囲を必然的に増加させ、ゆるやかな収束と一般化可能性の妥協を引き起こす可能性がある。
本稿では,局所特性を予測するための情報範囲を厳格に制限するために,線形時間複雑性を持つ分散データスコーピング手法を提案することで,この問題を解決することを目的とする。
複数の物理上の数値実験により,我々のデータスコーピング法はトレーニングの収束を著しく加速し,大規模工学シミュレーションにおけるベンチマークモデルの一般化性を向上させることが示された。
具体的には、熱伝達シミュレーションのトレーニングデータに含まれないジオメトリでは、畳み込みニューラルネットワーク(CNN)の精度を21.7%、フーリエニューラルネットワーク(FNO)の精度を38.5%向上させることができる。
関連論文リスト
- Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator [0.0]
DeepDeepONetは、レンダリングフラックスDEを高速化する強力なツールとして登場した。
我々は、入力ペア出力の観測を伴わずにこのマッピングを実現するために、Physical-In DeepONets (PI-DeepONets) を用いている。
論文 参考訳(メタデータ) (2023-07-03T21:10:30Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
しばしば見過ごされる処理ステップがエミュレータの予測品質にどのように影響するかを検討する。
1)空間ベクトル自己回帰(NVAR)の形式、(2)エコー状態ネットワーク(ESN)の形式。
いずれの場合も、トレーニングデータのサブサンプリングは、数値拡散に類似した小さなスケールでのバイアスの増加につながる。
論文 参考訳(メタデータ) (2023-04-28T21:34:53Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Physics-informed Convolutional Neural Networks for Temperature Field
Prediction of Heat Source Layout without Labeled Data [9.71214034180507]
本稿では,熱シミュレーションサロゲートのための物理インフォームド畳み込みニューラルネットワーク(CNN)を開発した。
ネットワークは、熱源配置から、ラベル付きデータなしで定常温度場へのマッピングを学習でき、これは部分差分方程式(PDE)の族全体の解法と等しい。
論文 参考訳(メタデータ) (2021-09-26T03:24:23Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Learning the solution operator of parametric partial differential
equations with physics-informed DeepOnets [0.0]
ディープ作用素ネットワーク(DeepONets)は、無限次元バナッハ空間間の非線形作用素を近似する実証能力によって注目されている。
DeepOnetモデルの出力をバイアスする効果的な正規化メカニズムを導入し、物理整合性を確保する新しいモデルクラスを提案する。
我々は,このシンプルかつ極めて効果的な拡張が,DeepOnetsの予測精度を大幅に向上するだけでなく,大規模なトレーニングデータセットの必要性を大幅に低減できることを示した。
論文 参考訳(メタデータ) (2021-03-19T18:15:42Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。