論文の概要: Learning Flame Evolution Operator under Hybrid Darrieus Landau and Diffusive Thermal Instability
- arxiv url: http://arxiv.org/abs/2405.07067v1
- Date: Sat, 11 May 2024 18:31:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 18:32:45.685977
- Title: Learning Flame Evolution Operator under Hybrid Darrieus Landau and Diffusive Thermal Instability
- Title(参考訳): ハイブリッドダリウスランダウにおける火炎進化演算子の学習と拡散熱不安定性
- Authors: Rixin Yu, Erdzan Hodzic, Karl-Johan Nogenmyr,
- Abstract要約: 本稿では,火炎不安定性のダイナミクスを解明するために,新しい作業者学習手法の適用について検討する。
トレーニングデータセットには幅広いパラメータ構成が含まれており、パラメトリックソリューション前進演算子を学習することができる。
その結果, 短期および長期の火炎進展を正確に予測する上で, これらの手法の有効性が示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in the integration of artificial intelligence (AI) and machine learning (ML) with physical sciences have led to significant progress in addressing complex phenomena governed by nonlinear partial differential equations (PDE). This paper explores the application of novel operator learning methodologies to unravel the intricate dynamics of flame instability, particularly focusing on hybrid instabilities arising from the coexistence of Darrieus-Landau (DL) and Diffusive-Thermal (DT) mechanisms. Training datasets encompass a wide range of parameter configurations, enabling the learning of parametric solution advancement operators using techniques such as parametric Fourier Neural Operator (pFNO), and parametric convolutional neural networks (pCNN). Results demonstrate the efficacy of these methods in accurately predicting short-term and long-term flame evolution across diverse parameter regimes, capturing the characteristic behaviors of pure and blended instabilities. Comparative analyses reveal pFNO as the most accurate model for learning short-term solutions, while all models exhibit robust performance in capturing the nuanced dynamics of flame evolution. This research contributes to the development of robust modeling frameworks for understanding and controlling complex physical processes governed by nonlinear PDE.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)を物理科学に統合する最近の進歩は、非線形偏微分方程式(PDE)によって支配される複雑な現象に対処する上で大きな進歩をもたらした。
本稿では,Darrieus-Landau(DL)機構とDiffusive-Thermal(DT)機構の共存から生じるハイブリッド不安定性に着目し,火炎不安定性の複雑なダイナミクスを解明するための新しい演算子学習手法の適用について検討する。
トレーニングデータセットには幅広いパラメータ構成が含まれており、パラメトリックフーリエニューラルオペレータ(pFNO)やパラメトリック畳み込みニューラルネットワーク(pCNN)といった技術を用いてパラメトリックソリューション前進演算子を学習することができる。
その結果, 各種パラメーター系における短期および長期の火炎進展を正確に予測し, 純および混合不安定性の特徴的挙動を捉える上で, これらの手法の有効性が示された。
比較分析により,pFNOは短期解を学習するための最も正確なモデルであることが明らかとなった。
本研究は、非線形PDEによって制御される複雑な物理過程の理解と制御のためのロバストなモデリングフレームワークの開発に寄与する。
関連論文リスト
- Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
本研究では,ロバストトレーニングのためのシステムモデル拡張(Systematic Model Augmentation for Robust Training)という,ニューラルネットワークPDEの普遍的学習戦略を紹介する。
モデルの弱点に挑戦し改善することに集中することにより、SMARTはデータスカース条件下でのトレーニング中の一般化エラーを低減する。
論文 参考訳(メタデータ) (2024-09-04T04:18:25Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
本研究では、パラメトリック偏微分方程式(PDE)に対する時間適応演算子学習への機械学習の適用について検討する。
我々の焦点は、PDEパラメータを表す追加入力を処理するために既存の演算子学習方法を拡張することである。
目標は、短期的なソリューションを正確に予測し、堅牢な長期統計を提供する統一的な学習アプローチを作ることだ。
論文 参考訳(メタデータ) (2024-02-14T18:12:42Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。