論文の概要: Large scale scattering using fast solvers based on neural operators
- arxiv url: http://arxiv.org/abs/2405.12380v1
- Date: Mon, 20 May 2024 21:20:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:43:12.930383
- Title: Large scale scattering using fast solvers based on neural operators
- Title(参考訳): ニューラル演算子に基づく高速解像器を用いた大規模散乱
- Authors: Zongren Zou, Adar Kahana, Enrui Zhang, Eli Turkel, Rishikesh Ranade, Jay Pathak, George Em Karniadakis,
- Abstract要約: 複素吸収境界条件を持つ外界領域におけるヘルムホルツ方程式によって記述される散乱問題を解くために,ハイブリッド反復移動可能解法(HINTS)を導入する。
本研究では,HINTSを用いて,標準反復解法が失敗する2次元および3次元問題の散乱問題を解く。
- 参考スコア(独自算出の注目度): 3.2712166248850685
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We extend a recently proposed machine-learning-based iterative solver, i.e. the hybrid iterative transferable solver (HINTS), to solve the scattering problem described by the Helmholtz equation in an exterior domain with a complex absorbing boundary condition. The HINTS method combines neural operators (NOs) with standard iterative solvers, e.g. Jacobi and Gauss-Seidel (GS), to achieve better performance by leveraging the spectral bias of neural networks. In HINTS, some iterations of the conventional iterative method are replaced by inferences of the pre-trained NO. In this work, we employ HINTS to solve the scattering problem for both 2D and 3D problems, where the standard iterative solver fails. We consider square and triangular scatterers of various sizes in 2D, and a cube and a model submarine in 3D. We explore and illustrate the extrapolation capability of HINTS in handling diverse geometries of the scatterer, which is achieved by training the NO on non-scattering scenarios and then deploying it in HINTS to solve scattering problems. The accurate results demonstrate that the NO in HINTS method remains effective without retraining or fine-tuning it whenever a new scatterer is given. Taken together, our results highlight the adaptability and versatility of the extended HINTS methodology in addressing diverse scattering problems.
- Abstract(参考訳): 我々は最近提案された機械学習に基づく反復解法(HINTS)を拡張し,複雑な吸収境界条件を持つ外界領域におけるヘルムホルツ方程式によって記述される散乱問題を解く。
HINTS法は、ニューラル演算子(NO)と標準イテレーティブソルバ(eg Jacobi と Gauss-Seidel (GS))を組み合わせて、ニューラルネットワークのスペクトルバイアスを利用してより良い性能を実現する。
HINTSでは、従来の反復法のいくつかのイテレーションは、事前訓練されたNOの推論に置き換えられる。
本研究では,HINTSを用いて,標準反復解法が失敗する2次元および3次元問題の散乱問題を解く。
2次元の正方形および三角形の散乱器と3次元の立方体とモデル潜水艦を考える。
本研究では,非散乱シナリオ上でNOをトレーニングし,HINTSにNOを配置することで,散乱問題の解法として実現した散乱器の多様なジオメトリを扱うHINTSの補間能力について考察する。
HINTS法におけるNOは,新しい散乱器が与えられるたびに再トレーニングや微調整を行わずに有効であることを示す。
その結果,多様な分散問題に対処する拡張HINTS手法の適応性と汎用性を強調した。
関連論文リスト
- Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
本研究では, 乱流によって受動的に対流する小物体の軌道に沿って, 空間・速度の欠落を再現する手法を提案する。
近年提案されているデータ駆動機械学習技術である条件付き生成拡散モデルを利用する。
論文 参考訳(メタデータ) (2024-10-31T14:26:10Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
既存の検出方法は、パラメータ化バウンディングボックス(BBox)を使用して(水平)オブジェクトをモデル化し、検出する。
このような機構は回転検出に有効な回帰損失を構築するのに基本的な限界があると主張する。
回転した物体をガウス分布としてモデル化することを提案する。
2次元から3次元へのアプローチを、方向推定を扱うアルゴリズム設計により拡張する。
論文 参考訳(メタデータ) (2022-09-22T07:50:48Z) - Differentiable Gaussianization Layers for Inverse Problems Regularized by Deep Generative Models [5.439020425819001]
深部生成モデルの潜時テンソルは、反転中に所望の高次元標準ガウス分布から外れる可能性があることを示す。
提案手法は精度と整合性の観点から最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-12-07T17:53:09Z) - Solving Partial Differential Equations with Point Source Based on
Physics-Informed Neural Networks [33.18757454787517]
近年では、偏微分方程式(PDE)の解法としてディープラーニング技術が用いられている。
3つの新しい手法でこの問題に対処するための普遍的な解決策を提案する。
提案手法を3つの代表的PDEを用いて評価し,提案手法が既存の深層学習手法よりも精度,効率,汎用性に優れていたことを示す。
論文 参考訳(メタデータ) (2021-11-02T06:39:54Z) - FiniteNet: A Fully Convolutional LSTM Network Architecture for
Time-Dependent Partial Differential Equations [0.0]
我々は、PDEのダイナミクスを利用するために、完全に畳み込みLSTMネットワークを使用する。
ベースラインアルゴリズムと比較して,ネットワークの誤差を2~3倍に削減できることを示す。
論文 参考訳(メタデータ) (2020-02-07T21:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。