論文の概要: Lagrangian Neural Networks for Reversible Dissipative Evolution
- arxiv url: http://arxiv.org/abs/2405.14645v2
- Date: Sun, 26 May 2024 21:03:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:59:12.373641
- Title: Lagrangian Neural Networks for Reversible Dissipative Evolution
- Title(参考訳): 可逆散逸進化のためのラグランジアンニューラルネットワーク
- Authors: Veera Sundararaghavan, Megna N. Shah, Jeff P. Simmons,
- Abstract要約: 最も一般的には、摩擦損失のない保守的なシステムがモデル化されているため、規則化を必要とせずに、システムは前後に進むことができる。
この研究は、進行進化で発生する散逸のために逆方向が悪くなるシステムに対処する。
新規性はMorse-Feshbach Lagrangian(英語版)の使用であり、これは系の次元の数を2倍にすることで散逸力学をモデル化する。
- 参考スコア(独自算出の注目度): 0.04681661603096333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing attention given to utilizing Lagrangian and Hamiltonian mechanics with network training in order to incorporate physics into the network. Most commonly, conservative systems are modeled, in which there are no frictional losses, so the system may be run forward and backward in time without requiring regularization. This work addresses systems in which the reverse direction is ill-posed because of the dissipation that occurs in forward evolution. The novelty is the use of Morse-Feshbach Lagrangian, which models dissipative dynamics by doubling the number of dimensions of the system in order to create a mirror latent representation that would counterbalance the dissipation of the observable system, making it a conservative system, albeit embedded in a larger space. We start with their formal approach by redefining a new Dissipative Lagrangian, such that the unknown matrices in the Euler-Lagrange's equations arise as partial derivatives of the Lagrangian with respect to only the observables. We then train a network from simulated training data for dissipative systems such as Fickian diffusion that arise in materials sciences. It is shown by experiments that the systems can be evolved in both forward and reverse directions without regularization beyond that provided by the Morse-Feshbach Lagrangian. Experiments of dissipative systems, such as Fickian diffusion, demonstrate the degree to which dynamics can be reversed.
- Abstract(参考訳): ラグランジアン力学とハミルトン力学をネットワークトレーニングで活用し、物理をネットワークに組み込むことに注目が集まっている。
最も一般的には、摩擦損失のない保守的なシステムがモデル化されているため、規則化を必要とせずに、システムは前後に進むことができる。
この研究は、進行進化で発生する散逸のために逆方向が悪くなるシステムに対処する。
その斬新さはモース=フェーシュバッハ・ラグランジアン(Morse-Feshbach Lagrangian)の使用であり、これは可観測系の散逸と相反するミラー潜在表現を生成するために系の次元を倍にすることで散逸力学をモデル化し、より広い空間に埋め込まれた保守的なシステムとなる。
我々は、ユーラー・ラグランジュ方程式の未知行列が観測可能量のみに関してラグランジュ方程式の部分微分として生じるような、新しい散逸的ラグランジュ方程式を再定義することによって、それらの形式的なアプローチから始める。
次に、物質科学で発生するフィック拡散のような散逸系のための模擬訓練データからネットワークを訓練する。
実験により、これらの系はモース=フェシュバッハ・ラグランジアンによって提供される以上の正規化をすることなく、前方方向と逆方向の両方で進化することができることが示されている。
フィック拡散のような散逸系の実験は、力学が逆転できる度合いを示す。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
連続グラフニューラルネットワークに基づく常微分方程式(GraphODE)により予測される前後の軌跡を整列するソフト制約として,単純かつ効果的な自己監督型正規化項を提案する。
時間反転対称性を効果的に課し、古典力学の下でより広い範囲の力学系にわたってより正確なモデル予測を可能にする。
様々な物理システムに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-10-10T08:52:16Z) - Neural Astrophysical Wind Models [0.0]
本研究は, 直交常微分方程式 (ODE) に個々の項として埋め込まれたディープニューラルネットワークが, これらの物理の双方をしっかりと発見できることを示す。
我々は、3つの保存変数を明示的に解決するのではなく、マッハ数に基づく損失関数を最適化し、近分散解に対してペナルティ項を適用する。
この研究は、非線形逆問題に対する機械論的解釈性を備えた有望な発見ツールとしてのニューラルODEの実現性をさらに強調する。
論文 参考訳(メタデータ) (2023-06-20T16:37:57Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
流体力学方程式を解くには、しばしばミクロ物理学の欠如を考慮に入れた閉包関係を用いる必要がある。
本研究では, 終端微分可能な偏微分方程式シミュレータを用いて, 偏微分ニューラルネットワークを訓練する。
本手法により, 非線形, 大型クヌーズン数プラズマ物理を再現する方程式に基づく手法が可能であることを示す。
論文 参考訳(メタデータ) (2023-06-19T06:02:53Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery [3.06483729892265]
離散ラグランジアンとその対称性群を運動の離散観測から学習する枠組みを導入する。
学習過程はラグランジアンの形を制限せず、速度や運動量の観測や予測を必要とせず、コスト項も含んでいる。
論文 参考訳(メタデータ) (2022-11-20T00:46:33Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Lagrangian Neural Network with Differential Symmetries and Relational
Inductive Bias [5.017136256232997]
システムのラグランジアンを学習するラグランジアンニューラルネットワーク(MCLNN)の運動量について述べる。
また、開発したモデルが任意の大きさのシステムに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-10-07T08:49:57Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
勾配降下法(SGD)を訓練した深部ニューラルネットワークの限界ダイナミクスについて検討する。
これらのダイナミクスを駆動する重要な要素は、本来のトレーニング損失ではなく、位相空間の振動を引き起こす速度と確率電流を暗黙的に規則化する修正損失の組み合わせであることを示す。
論文 参考訳(メタデータ) (2021-07-19T20:18:57Z) - Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit
Constraints [49.66841118264278]
私たちは、現在のアプローチの限界を押し上げるために、一連の挑戦的なカオスと拡張ボディシステムを導入します。
実験の結果,明示的な制約を持つモンテカルロ座標は,精度とデータ効率を100倍に向上させることがわかった。
論文 参考訳(メタデータ) (2020-10-26T13:35:16Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。