論文の概要: BInD: Bond and Interaction-generating Diffusion Model for Multi-objective Structure-based Drug Design
- arxiv url: http://arxiv.org/abs/2405.16861v2
- Date: Tue, 03 Dec 2024 09:17:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:38:16.836762
- Title: BInD: Bond and Interaction-generating Diffusion Model for Multi-objective Structure-based Drug Design
- Title(参考訳): BInD:多目的構造に基づく医薬品設計のための結合・相互作用生成拡散モデル
- Authors: Joongwon Lee, Wonho Zhung, Jisu Seo, Woo Youn Kim,
- Abstract要約: 本稿では,多目的薬物設計のための知識ベースガイダンスを用いた拡散モデルBInDを提案する。
BInDは、分子と標的タンパク質との相互作用を同時に生成し、全ての主要な目的を等しく考慮するよう設計されている。
総合評価では、BInDは全ての目的に対して頑健な性能を達成し、それぞれが最先端の手法よりも優れ、適合していることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A remarkable advance in geometric deep generative models with accumulated structural data enables structure-based drug design (SBDD) with target protein information only. However, most existing models struggle to address multi-objectives simultaneously while performing well only in their specialized tasks. Here, we present BInD, a diffusion model with knowledge-based guidance for multi-objective SBDD. BInD is designed to co-generate molecules and their interactions with a target protein to consider all key objectives equally well, including target-specific interactions, molecular properties, and local geometry. Comprehensive evaluations show that BInD achieves robust performance for all objectives while outperforming or matching state-of-the-art methods for each. Finally, we propose a train-free optimization method empowered by retrieving target-specific interactions, highlighting the role of non-covalent interactions in achieving higher selectivity and binding affinities to a target protein.
- Abstract(参考訳): 蓄積構造データを用いた幾何学的深層生成モデルの顕著な進歩は、標的タンパク質情報のみを含む構造に基づく薬物設計(SBDD)を可能にする。
しかし、既存のほとんどのモデルは、特定のタスクでのみうまく機能しながら、同時に複数の目的に対処するのに苦労している。
本稿では,多目的SBDDのための知識ベースガイダンスを用いた拡散モデルBInDを提案する。
BInDは、分子と標的タンパク質との相互作用を共同生成して、標的特異的相互作用、分子特性、局所幾何学を含む全ての主要な目的を等しく考慮するように設計されている。
総合評価では、BInDは全ての目的に対して頑健な性能を達成し、それぞれが最先端の手法よりも優れ、適合していることを示している。
最後に, 標的タンパク質に親和性を持たせ, 高い選択性を実現する上での非共有相互作用の役割を強調し, 対象タンパク質に親和性を持たせることによる列車自由最適化手法を提案する。
関連論文リスト
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design [81.95343363178662]
原子は分離違反を避けるために 最小の対距離を維持する必要がある
NucleusDiff は原子核と周囲の電子雲の間の相互作用を距離制約によってモデル化する。
違反率は1000%まで減少し、結合親和性は22.16%まで向上し、構造に基づく薬物設計の最先端モデルを上回る。
論文 参考訳(メタデータ) (2024-09-16T08:42:46Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
拡散生成モデルは3次元分子構造に直接作用する。
分子構造の潜在表現を学習するための新しいGNNアーキテクチャを提案する。
本モデルでは,全原子タンパク質の表現に匹敵する性能を示しながら,推論時間を3倍に短縮した。
論文 参考訳(メタデータ) (2023-11-22T15:32:31Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
リガンド分子コンホメーション生成は、薬物発見において重要な課題である。
この問題を解決するためにディープラーニングモデルが開発されている。
これらのモデルはしばしば、本質的な側情報がないため、意味のある構造やランダム性を欠いたコンフォメーションを生成する。
論文 参考訳(メタデータ) (2023-08-02T09:56:47Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
構造に基づくde novo法は、薬物と標的の相互作用を深く生成するアーキテクチャに組み込むことによって、アクティブなデータ不足を克服することができる。
本稿では,医薬品発見のためのタンパク質配列に基づく拡張学習モデルについて紹介する。
概念実証として、RLモデルを用いて分子を4つのターゲットに設計した。
論文 参考訳(メタデータ) (2022-08-14T10:41:52Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
本稿では,関係グラフアーキテクチャ内の3次元タンパク質-リガンド接触を符号化したグラフベース生成モデリング技術を提案する。
これらのモデルは、活性特異的な分子生成を可能にする条件付き変分オートエンコーダと、ターゲットの結合ポケット内の分子相互作用の予測を提供する配置接触生成を組み合わせる。
論文 参考訳(メタデータ) (2022-04-05T22:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。