論文の概要: Minimum Reduced-Order Models via Causal Inference
- arxiv url: http://arxiv.org/abs/2407.00271v2
- Date: Fri, 13 Dec 2024 04:46:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:14.174235
- Title: Minimum Reduced-Order Models via Causal Inference
- Title(参考訳): 因果推論による最小次モデル
- Authors: Nan Chen, Honghu Liu,
- Abstract要約: 本研究では、因果エントロピーと呼ばれる情報理論指標を用いて、スパースROMの同定に効率的な手法を提案する。
因果エントロピーのガウス近似は、非常に非ガウス統計の存在下においても、非常によく機能することを示す。
また, 得られたROMを用いて, 部分観測とデータ同化による観測値の復元を行った。
- 参考スコア(独自算出の注目度): 2.300302733934937
- License:
- Abstract: Constructing sparse, effective reduced-order models (ROMs) for high-dimensional dynamical data is an active area of research in applied sciences. In this work, we study an efficient approach to identifying such sparse ROMs using an information-theoretic indicator called causation entropy. Given a feature library of possible building block terms for the sought ROMs, the causation entropy ranks the importance of each term to the dynamics conveyed by the training data before a parameter estimation procedure is performed. It thus allows for an efficient construction of a hierarchy of ROMs with varying degrees of sparsity to effectively handle different tasks. This article examines the ability of the causation entropy to identify skillful sparse ROMs when a relatively high-dimensional ROM is required to emulate the dynamics conveyed by the training dataset. We demonstrate that a Gaussian approximation of the causation entropy still performs exceptionally well even in presence of highly non-Gaussian statistics. Such approximations provide an efficient way to access the otherwise hard to compute causation entropies when the selected feature library contains a large number of candidate functions. Besides recovering long-term statistics, we also demonstrate good performance of the obtained ROMs in recovering unobserved dynamics via data assimilation with partial observations, a test that has not been done before for causation-based ROMs of partial differential equations. The paradigmatic Kuramoto-Sivashinsky equation placed in a chaotic regime with highly skewed, multimodal statistics is utilized for these purposes.
- Abstract(参考訳): 高次元動的データに対するスパースモデル(ROM)の構築は応用科学における研究の活発な領域である。
本研究では、因果エントロピーと呼ばれる情報理論指標を用いて、このようなスパースROMを同定する効率的な手法について検討する。
抽出されたROMに対するビルディングブロック項の可能な特徴ライブラリが与えられた場合、因果エントロピーはパラメータ推定手順を行う前に、トレーニングデータによって伝達されるダイナミクスに対して各項の重要性をランク付けする。
これにより、異なるタスクを効果的に扱えるように、範囲の異なるROMの階層構造を効率的に構築することができる。
本稿では,訓練データセットが伝達するダイナミックスをエミュレートするために,比較的高次元のROMを必要とする場合に,因果エントロピーが熟練したスパースROMを識別する能力について検討する。
因果エントロピーのガウス近似は、非常に非ガウス統計の存在下においても、非常によく機能することを示した。
このような近似は、選択された特徴ライブラリが多数の候補関数を含む場合、因果関係のエントロピーを計算しにくくする効率的な方法を提供する。
長期統計の回復に加えて、偏微分方程式の因果関係に基づくROMのテストである、部分的な観測とデータ同化による未観測のダイナミクスの回復においても、得られたROMの良好な性能を示す。
これらの目的のために、高度に歪んだマルチモーダル統計を持つカオス状態に置かれるパラダイム的倉本・シヴァシンスキー方程式を利用する。
関連論文リスト
- Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework [56.82432591933544]
分散勾配降下(SGD)は、計算リソースのスケーリング、トレーニング時間の短縮、マシンラーニングにおけるユーザのプライバシ保護の支援などにより、近年注目されている。
本稿では,遅延微分方程式(SDDE)と勾配到着の近似に基づく分散SGDの実行時間と安定化について述べる。
活性化作業員の増加は, 安定度による分散SGDを必ずしも加速させるものではないことが興味深い。
論文 参考訳(メタデータ) (2024-06-17T02:56:55Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Statistical Mechanics of Dynamical System Identification [2.8820361301109365]
我々はスパース方程式探索アルゴリズムを解析するための統計力学手法を開発した。
与えられたモデルの雑音を推定する閉ループ推定法を提案する。
このスパース方程式発見の観点は万能であり、他の様々な方程式発見アルゴリズムに適応することができる。
論文 参考訳(メタデータ) (2024-03-04T04:32:28Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
我々は、利用可能なデータから非ガウスL'evy雑音の方程式を推定し、動的挙動を合理的に予測する。
理論的枠組みを確立し、非対称なL'evyジャンプ測度、ドリフト、拡散を計算する数値アルゴリズムを設計する。
この方法は、利用可能なデータセットから規制法則を発見し、複雑なランダム現象のメカニズムを理解するのに有効なツールとなる。
論文 参考訳(メタデータ) (2021-07-21T14:50:36Z) - Learning effective stochastic differential equations from microscopic
simulations: combining stochastic numerics and deep learning [0.46180371154032895]
ニューラルネットワークを用いた実効SDEにおけるドリフトと拡散関数を近似した。
当社のアプローチでは、長いトラジェクトリを必要とせず、散在するスナップショットデータで動作し、スナップショット毎に異なるタイムステップを自然に処理するように設計されています。
論文 参考訳(メタデータ) (2021-06-10T13:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。