論文の概要: Minimum Reduced-Order Models via Causal Inference
- arxiv url: http://arxiv.org/abs/2407.00271v2
- Date: Fri, 13 Dec 2024 04:46:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:14.174235
- Title: Minimum Reduced-Order Models via Causal Inference
- Title(参考訳): 因果推論による最小次モデル
- Authors: Nan Chen, Honghu Liu,
- Abstract要約: 本研究では、因果エントロピーと呼ばれる情報理論指標を用いて、スパースROMの同定に効率的な手法を提案する。
因果エントロピーのガウス近似は、非常に非ガウス統計の存在下においても、非常によく機能することを示す。
また, 得られたROMを用いて, 部分観測とデータ同化による観測値の復元を行った。
- 参考スコア(独自算出の注目度): 2.300302733934937
- License:
- Abstract: Constructing sparse, effective reduced-order models (ROMs) for high-dimensional dynamical data is an active area of research in applied sciences. In this work, we study an efficient approach to identifying such sparse ROMs using an information-theoretic indicator called causation entropy. Given a feature library of possible building block terms for the sought ROMs, the causation entropy ranks the importance of each term to the dynamics conveyed by the training data before a parameter estimation procedure is performed. It thus allows for an efficient construction of a hierarchy of ROMs with varying degrees of sparsity to effectively handle different tasks. This article examines the ability of the causation entropy to identify skillful sparse ROMs when a relatively high-dimensional ROM is required to emulate the dynamics conveyed by the training dataset. We demonstrate that a Gaussian approximation of the causation entropy still performs exceptionally well even in presence of highly non-Gaussian statistics. Such approximations provide an efficient way to access the otherwise hard to compute causation entropies when the selected feature library contains a large number of candidate functions. Besides recovering long-term statistics, we also demonstrate good performance of the obtained ROMs in recovering unobserved dynamics via data assimilation with partial observations, a test that has not been done before for causation-based ROMs of partial differential equations. The paradigmatic Kuramoto-Sivashinsky equation placed in a chaotic regime with highly skewed, multimodal statistics is utilized for these purposes.
- Abstract(参考訳): 高次元動的データに対するスパースモデル(ROM)の構築は応用科学における研究の活発な領域である。
本研究では、因果エントロピーと呼ばれる情報理論指標を用いて、このようなスパースROMを同定する効率的な手法について検討する。
抽出されたROMに対するビルディングブロック項の可能な特徴ライブラリが与えられた場合、因果エントロピーはパラメータ推定手順を行う前に、トレーニングデータによって伝達されるダイナミクスに対して各項の重要性をランク付けする。
これにより、異なるタスクを効果的に扱えるように、範囲の異なるROMの階層構造を効率的に構築することができる。
本稿では,訓練データセットが伝達するダイナミックスをエミュレートするために,比較的高次元のROMを必要とする場合に,因果エントロピーが熟練したスパースROMを識別する能力について検討する。
因果エントロピーのガウス近似は、非常に非ガウス統計の存在下においても、非常によく機能することを示した。
このような近似は、選択された特徴ライブラリが多数の候補関数を含む場合、因果関係のエントロピーを計算しにくくする効率的な方法を提供する。
長期統計の回復に加えて、偏微分方程式の因果関係に基づくROMのテストである、部分的な観測とデータ同化による未観測のダイナミクスの回復においても、得られたROMの良好な性能を示す。
これらの目的のために、高度に歪んだマルチモーダル統計を持つカオス状態に置かれるパラダイム的倉本・シヴァシンスキー方程式を利用する。
関連論文リスト
- Kinetic Interacting Particle Langevin Monte Carlo [0.0]
本稿では,潜在変数モデルにおける統計的推論のために,アンダーダム付きランゲヴィンアルゴリズムの相互作用について紹介し,解析する。
本稿では,パラメータと潜伏変数の空間内で共同で進化する拡散過程を提案する。
統計モデルのパラメータを推定する実用的なアルゴリズムとして,この拡散について2つの明確な考察を行う。
論文 参考訳(メタデータ) (2024-07-08T09:52:46Z) - Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
我々はスパース方程式探索アルゴリズムを統計的に解析する手法を開発した。
このフレームワークでは、統計力学は複雑さとフィットネスの間の相互作用を分析するためのツールを提供する。
論文 参考訳(メタデータ) (2024-03-04T04:32:28Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Mining Causality from Continuous-time Dynamics Models: An Application to
Tsunami Forecasting [22.434845478979604]
本研究では,連続時間モデルから因果構造を抽出する機構を提案する。
我々は,動的モデルの入力層の重み付けによって因果構造を捕捉するモデルを訓練する。
本手法を津波予報という実世界の問題に適用し,正確な因果構造を特徴付けるのが困難である。
論文 参考訳(メタデータ) (2022-10-10T18:53:13Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
量子情報力学と熱化を特徴付けるツールとして、OTOC(Out-of-time-orderor)が確立されている。
我々は、OTOCが、ETH(Eigenstate Thermalisation hypothesis)の詳細な詳細を調査するための、本当に正確なツールであることを明確に示している。
無限温度状態における局所作用素の和からなる可観測物の一般クラスに対して、$omega_textrmGOE$の有限サイズスケーリングを推定する。
論文 参考訳(メタデータ) (2021-03-01T17:51:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Optimal statistical inference in the presence of systematic
uncertainties using neural network optimization based on binned Poisson
likelihoods with nuisance parameters [0.0]
本研究は,特徴工学のためのニューラルネットワークによる次元削減を構築するための新しい戦略を提案する。
提案手法は, 最適に近い利害関係のパラメータを推定する方法について議論する。
論文 参考訳(メタデータ) (2020-03-16T13:27:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。