論文の概要: Tensor networks enable the calculation of turbulence probability distributions
- arxiv url: http://arxiv.org/abs/2407.09169v1
- Date: Fri, 12 Jul 2024 11:06:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 23:47:49.960726
- Title: Tensor networks enable the calculation of turbulence probability distributions
- Title(参考訳): テンソルネットワークは乱流確率分布の計算を可能にする
- Authors: Nikita Gourianov, Peyman Givi, Dieter Jaksch, Stephen B. Pope,
- Abstract要約: 乱流PDFを"テンソルネットワーク" (TN) と呼ばれる極めて圧縮された形式にパラメータ化することで, 次元問題を克服する方法を示す。
我々はそれぞれ$mathcalO(106)$と$mathcalO(103)$でメモリと計算コストの削減を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the dynamics of turbulent fluid flows has long been a central goal of science and engineering. Yet, even with modern computing technology, accurate simulation of all but the simplest turbulent flow-fields remains impossible: the fields are too chaotic and multi-scaled to directly store them in memory and perform time-evolution. An alternative is to treat turbulence $\textit{probabilistically}$, viewing flow properties as random variables distributed according to joint probability density functions (PDFs). Turbulence PDFs are neither chaotic nor multi-scale, but are still challenging to simulate due to their high dimensionality. Here we show how to overcome the dimensionality problem by parameterising turbulence PDFs into an extremely compressed format known as a "tensor network" (TN). The TN paradigm enables simulations on single CPU cores that would otherwise be impractical even with supercomputers: for a $5+1$ dimensional PDF of a chemically reactive turbulent flow, we achieve reductions in memory and computational costs by factors of $\mathcal{O}(10^6)$ and $\mathcal{O}(10^3)$, respectively, compared to standard finite difference algorithms. A future path is opened towards something heretofore regarded as infeasible: directly simulating high-dimensional PDFs of both turbulent flows and other chaotic systems that are useful to describe probabilistically.
- Abstract(参考訳): 乱流の流れの力学を予測することは、長い間科学と工学の中心的な目標であった。
しかし、現代のコンピューティング技術でさえ、最も単純な乱流場以外の全てを正確にシミュレーションすることは不可能である。
別の方法として、乱流 $\textit{probabilistically}$ を、関節確率密度関数(PDFs)に従って分布するランダム変数としてフロー特性を見ることができる。
乱流PDFはカオスでもマルチスケールでもないが、高次元性のためシミュレーションが難しい。
本稿では, 乱流PDFを"テンソルネットワーク" (TN) と呼ばれる極めて圧縮された形式にパラメータ化することで, 次元問題を克服する方法を示す。
化学反応性乱流の5+1$のPDFでは、標準有限差分アルゴリズムと比較して、それぞれ$\mathcal{O}(10^6)$と$\mathcal{O}(10^3)$の係数でメモリと計算コストの削減を達成する。
乱流と他のカオス系の両方の高次元PDFを直接シミュレートし、確率論的に記述するのに有用である。
関連論文リスト
- Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators [78.64101336150419]
カオスシステムの長期的挙動を予測することは、気候モデリングなどの様々な応用に不可欠である。
このような完全解法シミュレーションに対する別のアプローチは、粗いグリッドを使用して、時間テキストモデルによってエラーを修正することである。
この制限を克服する物理インフォームド・ニューラル演算子(PINO)を用いたエンド・ツー・エンドの学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-09T17:05:45Z) - Quantum-Inspired Fluid Simulation of 2D Turbulence with GPU Acceleration [0.894484621897981]
本研究では,速度を行列積状態とするNavier-Stokes方程式の解法について検討する。
我々の適応はシミュレーションを最大12.1倍スピードアップさせる。
このアルゴリズムは乱流状態の直接数値シミュレーションに対して潜在的に有利であることがわかった。
論文 参考訳(メタデータ) (2024-06-25T10:31:20Z) - Complete quantum-inspired framework for computational fluid dynamics [36.136619420474766]
本稿では、メモリと実行時スケールをメッシュサイズで多対数的に拡張した非圧縮性流体のフルスタック解法を提案する。
我々のフレームワークは、量子状態の強力な圧縮表現である行列生成状態に基づいている。
論文 参考訳(メタデータ) (2023-08-02T18:01:03Z) - Simulation-free Schr\"odinger bridges via score and flow matching [89.4231207928885]
シミュレーションフリースコアとフローマッチング([SF]$2$M)を提案する。
本手法は,拡散モデルのトレーニングに使用するスコアマッチング損失と,連続流のトレーニングに使用されるフローマッチング損失の両方を一般化する。
特に、[SF]$2$Mは、高次元の細胞動態を正確にモデル化し、既知の遺伝子制御ネットワークをシミュレートする最初の方法である。
論文 参考訳(メタデータ) (2023-07-07T15:42:35Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
流体力学方程式を解くには、しばしばミクロ物理学の欠如を考慮に入れた閉包関係を用いる必要がある。
本研究では, 終端微分可能な偏微分方程式シミュレータを用いて, 偏微分ニューラルネットワークを訓練する。
本手法により, 非線形, 大型クヌーズン数プラズマ物理を再現する方程式に基づく手法が可能であることを示す。
論文 参考訳(メタデータ) (2023-06-19T06:02:53Z) - Transformers Learn Shortcuts to Automata [52.015990420075944]
低深度変換器は任意の有限状態オートマトンを計算できる。
我々は,$O(log T)$レイヤを持つ変換器が,長さ$T$の入力シーケンス上で,オートマトンを正確に再現可能であることを示す。
さらに、これらの解の脆性について検討し、潜在的な緩和を提案する。
論文 参考訳(メタデータ) (2022-10-19T17:45:48Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - A fully-differentiable compressible high-order computational fluid
dynamics solver [0.0]
圧縮可能なナビエ・ストークス方程式は圧縮可能な流れを制御し、乱流や衝撃のような複雑な現象を許容する。
ハードウェアとソフトウェアが著しく進歩したにもかかわらず、流体流の最小のスケールでは、現実のアプリケーションでは計算コストが禁じられている。
本稿では,高次数値計算法を用いて圧縮性流体の計算を行うための,完全微分可能な3次元フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-09T15:18:51Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
ワッサーシュタイン勾配流を近似するスケーラブルなスキームを導入する。
我々のアプローチは、JKOステップを識別するために、入力ニューラルネットワーク(ICNN)に依存しています。
その結果、勾配拡散の各ステップで測定値からサンプリングし、その密度を計算することができる。
論文 参考訳(メタデータ) (2021-06-01T19:21:48Z) - Solving Inverse Stochastic Problems from Discrete Particle Observations
Using the Fokker-Planck Equation and Physics-informed Neural Networks [7.6595660586147325]
物理インフォームドニューラルネットワーク(PINN)に基づくフレームワークを開発する。
PINNは分岐サンプルとフォッカー・プランク方程式を結合し、同時に方程式を学習し、多次元確率密度関数を推定する。
我々はFP方程式と力学を同時に高精度に推定できることを最大5次元で示す。
論文 参考訳(メタデータ) (2020-08-24T18:51:56Z) - Gravitational-wave parameter estimation with autoregressive neural
network flows [0.0]
深部ニューラルネットワークを用いた重力波データから二元ブラックホール系のパラメータを高速に推定するための自己回帰正規化フローを導入する。
正規化フロー(英: normalizing flow)は、単純な確率分布からより複雑なものへの変換を誘導するために用いられるサンプル空間上の可逆写像である。
可変オートエンコーダフレームワークに自己回帰フローを組み込むことにより,より強力な潜在変数モデルを構築する。
論文 参考訳(メタデータ) (2020-02-18T15:44:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。