論文の概要: Neural stochastic Volterra equations: learning path-dependent dynamics
- arxiv url: http://arxiv.org/abs/2407.19557v1
- Date: Sun, 28 Jul 2024 18:44:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 15:45:34.615772
- Title: Neural stochastic Volterra equations: learning path-dependent dynamics
- Title(参考訳): ニューラル確率ボルテラ方程式:経路依存力学の学習
- Authors: David J. Prömel, David Scheffels,
- Abstract要約: ボルテラ方程式(Volterra equation、SVE)は、記憶効果と不規則な振る舞いを持つランダムシステムの時間進化の数学的モデルとして機能する。
ニューラルボルテラ方程式を物理に着想を得たアーキテクチャとして導入し、ニューラル微分方程式のクラスを一般化し、理論的基礎を提供する。
混乱した振り子方程式、一般化されたオルンシュタイン-ウレンベック過程、粗いヘストンモデルなど、様々なSVEに関する数値実験を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic Volterra equations (SVEs) serve as mathematical models for the time evolutions of random systems with memory effects and irregular behaviour. We introduce neural stochastic Volterra equations as a physics-inspired architecture, generalizing the class of neural stochastic differential equations, and provide some theoretical foundation. Numerical experiments on various SVEs, like the disturbed pendulum equation, the generalized Ornstein--Uhlenbeck process and the rough Heston model are presented, comparing the performance of neural SVEs, neural SDEs and Deep Operator Networks (DeepONets).
- Abstract(参考訳): 確率ボルテラ方程式(SVE)は、記憶効果と不規則な振る舞いを持つランダムシステムの時間進化の数学的モデルとして機能する。
本稿では, 神経確率微分方程式のクラスを一般化し, 理論的基礎を提供する。
ニューラルネットワークSVE,ニューラルSDE,Deep Operator Networks (DeepONets) の性能を比較し, 乱れた振り子方程式, 一般化されたOrnstein-Uhlenbeck過程, 粗いヘストンモデルなどの各種SVEに関する数値実験を行った。
関連論文リスト
- Neural Laplace for learning Stochastic Differential Equations [0.0]
Neuralplaceは多種多様な微分方程式(DE)を学習するための統一的なフレームワークである
DEの異なるクラスに対して、このフレームワークは通常の微分方程式(ODE)のクラスを学習することを目的としたニューラルネットワークに依存する他のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-06-07T14:29:30Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T10:28:14Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - On Neural Differential Equations [13.503274710499971]
特に、ニューラル微分方程式(NDE)は、ニューラルネットワークと微分方程式が同じコインの両側であることを示す。
NDEは生成問題、動的システム、時系列を扱うのに適している。
NDEは高容量関数近似、モデル空間への強い先行性、不規則なデータを扱う能力、メモリ効率、そして両サイドで利用可能な豊富な理論を提供する。
論文 参考訳(メタデータ) (2022-02-04T23:32:29Z) - Neural Stochastic Partial Differential Equations [1.2183405753834562]
物理に着想を得たニューラルアーキテクチャの2つの重要なクラスの拡張を提供するニューラルSPDEモデルを導入する。
一方、一般的な神経-通常、制御され、粗い-微分方程式モデルをすべて拡張し、入ってくる情報を処理することができる。
一方、関数空間間のマッピングをモデル化するニューラルネットワークの最近の一般化であるNeural Operatorsを拡張して、複雑なSPDEソリューション演算子を学習することができる。
論文 参考訳(メタデータ) (2021-10-19T20:35:37Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。