論文の概要: Persistent de Rham-Hodge Laplacians in the Eulerian representation
- arxiv url: http://arxiv.org/abs/2408.00220v1
- Date: Thu, 1 Aug 2024 01:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 22:04:56.490963
- Title: Persistent de Rham-Hodge Laplacians in the Eulerian representation
- Title(参考訳): ユーレアン表現におけるラプラシアンの存在
- Authors: Zhe Su, Yiying Tong, Guo-Wei Wei,
- Abstract要約: 略語としてde Rham-Hodge Laplacian,Persistent Hodge Laplacian(PHL)を提案する。
我々は、進化的ド・ラム=ホッジ理論をラグランジュの定式化からユーレの定式化まで拡張する。
提案したPHLは,ボリュームデータの機械学習とディープラーニング予測を容易にする。
- 参考スコア(独自算出の注目度): 7.0103981121698355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, topological data analysis (TDA) has become a trending topic in data science and engineering. However, the key technique of TDA, i.e., persistent homology, is defined on point cloud data, which restricts its scope. In this work, we propose persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL) for abbreviation, for the TDA on manifolds with boundaries, or volumetric data. Specifically, we extended the evolutionary de Rham-Hodge theory from the Lagrangian formulation to the Eulerian formulation via structure-persevering Cartesian grids, and extended the persistent Laplacian on point clouds to persistent (de Rham-)Hodge Laplacian on nested families of manifolds with appropriate boundary conditions. The proposed PHL facilitates the machine learning and deep learning prediction of volumetric data. For a proof-of-principle application of the proposed PHL, we propose a persistent Hodge Laplacian learning (PHLL) algorithm for data on manifolds or volumetric data. To this end, we showcase the PHLL prediction of protein-ligand binding affinities in two benchmark datasets. Our numerical experiments highlight the power and promise of PHLL.
- Abstract(参考訳): 近年、トポロジカルデータ分析(TDA)がデータサイエンスとエンジニアリングのトレンドとなっている。
しかし、TDAの鍵となる技術、すなわち永続ホモロジーは、その範囲を制限する点クラウドデータ上で定義される。
本研究では, 境界を持つ多様体上のTDA, あるいは体積データに対する, 略語として, 永続的 de Rham-Hodge Laplacian あるいは持続的 Hodge Laplacian (PHL) を提案する。
具体的には、進化的ド・ラム=ホッジ理論をラグランジュの定式化から、構造を包含するカルテ格子を通じてユーレリアの定式化に拡張し、点雲上の永続ラプラシアンを、適切な境界条件を持つ多様体の入れ子付き族上の永続(ド・ラム-)ホッジ・ラプラシアンに拡張した。
提案したPHLは,ボリュームデータの機械学習とディープラーニング予測を容易にする。
提案するPHLの原理的応用を実証するために,多様体や体積データに対する持続的ホッジラプラシアン学習(PHLL)アルゴリズムを提案する。
そこで本研究では,2つのベンチマークデータセットにおいて,タンパク質-リガンド結合親和性のPHLL予測を示す。
我々の数値実験はPHLLのパワーと約束を浮き彫りにした。
関連論文リスト
- Pullback Flow Matching on Data Manifolds [10.187244125099479]
プルバックフローマッチング(Pullback Flow Matching、PFM)は、データ多様体上の生成モデリングのためのフレームワークである。
PFMの有効性を、合成、データダイナミクス、タンパク質配列データに適用し、特定の性質を持つ新規なタンパク質を生成することによって実証する。
本手法は, 創薬・材料科学に強い可能性を示し, 特定の性質を持つ新規試料の生成に大きな関心を寄せている。
論文 参考訳(メタデータ) (2024-10-06T16:41:26Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Geometrically Aligned Transfer Encoder for Inductive Transfer in
Regression Tasks [5.038936775643437]
微分幾何学に基づく新しい移動法,すなわち幾何学的配向変換(GATE)を提案する。
すべての任意の点が重なり合う領域の局所平坦な座標に写像されることを保証するために、タスクのペア間の適切な微分同相性を見つけ、ソースからターゲットデータへの知識の伝達を可能にする。
GATEは従来の手法より優れ、様々な分子グラフデータセットの潜伏空間と外挿領域の両方で安定した振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-10T07:11:25Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Manifold Learning with Sparse Regularised Optimal Transport [0.17205106391379024]
実世界のデータセットはノイズの多い観測とサンプリングを受けており、基礎となる多様体に関する情報を蒸留することが大きな課題である。
本稿では,2次正規化を用いた最適輸送の対称版を利用する多様体学習法を提案する。
得られたカーネルは連続的な極限においてLaplace型演算子と整合性を証明し、ヘテロスケダスティックノイズに対する堅牢性を確立し、これらの結果をシミュレーションで示す。
論文 参考訳(メタデータ) (2023-07-19T08:05:46Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
論文 参考訳(メタデータ) (2022-11-20T19:09:50Z) - The Manifold Hypothesis for Gradient-Based Explanations [55.01671263121624]
勾配に基づく説明アルゴリズムは知覚的に整合した説明を提供する。
特徴属性がデータの接する空間と一致しているほど、知覚的に一致している傾向にあることを示す。
説明アルゴリズムは、その説明をデータ多様体と整合させるよう積極的に努力すべきである。
論文 参考訳(メタデータ) (2022-06-15T08:49:24Z) - Algebraic Machine Learning with an Application to Chemistry [0.0]
我々はスムーズな仮定に頼ることなく、微粒な幾何学的情報をキャプチャする機械学習パイプラインを開発した。
特に,基礎変数の特異点近傍にある点を数値的に検出する手法を提案する。
論文 参考訳(メタデータ) (2022-05-11T22:41:19Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。