論文の概要: A First Look at Chebyshev-Sobolev Series for Digital Ink
- arxiv url: http://arxiv.org/abs/2408.02135v1
- Date: Sun, 4 Aug 2024 20:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:56:07.400451
- Title: A First Look at Chebyshev-Sobolev Series for Digital Ink
- Title(参考訳): デジタルインクのChebyshev-Sobolevシリーズ
- Authors: Deepak Singh Kalhan, Stephen M. Watt,
- Abstract要約: デジタルインクを平面曲線として考えることは、様々なアプリケーションに有用なフレームワークを提供する。
シンボル認識におけるChebyshev-Sobolevシリーズの使用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considering digital ink as plane curves provides a valuable framework for various applications, including signature verification, note-taking, and mathematical handwriting recognition. These plane curves can be obtained as parameterized pairs of approximating truncated series (x(s), y(s)) determined by sampled points. Earlier work has found that representing these truncated series (polynomials) in a Legendre or Legendre-Sobolev basis has a number of desirable properties. These include compact data representation, meaningful clustering of like symbols in the vector space of polynomial coefficients, linear separability of classes in this space, and highly efficient calculation of variation between curves. In this work, we take a first step at examining the use of Chebyshev-Sobolev series for symbol recognition. The early indication is that this representation may be superior to Legendre-Sobolev representation for some purposes.
- Abstract(参考訳): デジタルインクを平面曲線として考えることは、署名検証、メモ取り、数学的手書き認識など、様々なアプリケーションに有用なフレームワークを提供する。
これらの平面曲線は、サンプリングされた点によって決定されるtruncated series (x(s, y(s)) のパラメータ化された対として得ることができる。
初期の研究は、ルジャンドルやルジャンドル・ソボレフの基準で、これらの切り離された級数(ポリノミアル)を表現することが、いくつかの望ましい性質を持つことを発見した。
これにはコンパクトなデータ表現、多項式係数のベクトル空間における記号の有意義なクラスタリング、この空間におけるクラスの線形分離性、曲線間の変動の高精度な計算が含まれる。
本研究では,記号認識におけるチェビシェフ・ソボレフ級数の利用について検討する。
この表現は、いくつかの目的のためにルジャンドル・ソボレフ表現よりも優れている可能性があるという初期の兆候である。
関連論文リスト
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
グラフの有限集合がラプラシアンの重み付き和を通してデータ分布の関係を特徴付けるグラフ辞書信号モデルを定義する。
本稿では,観測データからグラフ辞書表現を推論するフレームワークを提案する。
我々は,脳活動データに基づく運動画像復号作業におけるグラフ辞書表現を利用して,従来の手法よりも想像的な動きをよりよく分類する。
論文 参考訳(メタデータ) (2024-11-08T17:40:43Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - Curvy: A Parametric Cross-section based Surface Reconstruction [2.1165011830664677]
本稿では, 平面スパース断面を用いた新しい形状点雲の再構成手法を提案する。
我々は、適応分割を用いたコンパクトなパラメトリックポリライン表現を用いて断面を表現し、グラフニューラルネットワークを用いて学習を行い、基礎となる形状を再構築する。
論文 参考訳(メタデータ) (2024-09-01T20:15:08Z) - Sampling and Uniqueness Sets in Graphon Signal Processing [136.68956350251418]
グラフとグラフの極限の理論を活用して、大きなグラフの族上のサンプリング集合の性質について検討する。
我々は、収束結果を利用して、ほぼ最適なサンプリングセットを得るアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-01-11T22:31:48Z) - Hypergraphs with Edge-Dependent Vertex Weights: Spectral Clustering
based on the 1-Laplacian [24.88719567631694]
エッジ依存重みを含むハイパーグラフの1-ラプラシアンを定義するフレキシブルなフレームワークを提案する。
フレームワーク内の特別な場合、対応するハイパーグラフ1-ラプラシアンが関連するグラフの1-ラプラシアンと同値であることを示す。
論文 参考訳(メタデータ) (2023-04-30T12:21:42Z) - Recursive Binding for Similarity-Preserving Hypervector Representations
of Sequences [4.65149292714414]
HDC/VSAソリューションを設計するための重要なステップは、入力データからそのような表現を得ることである。
ここでは, 近傍位置における同一配列要素の類似性を両立させる分散表現への変換を提案する。
単語類似性の人間の知覚をモデル化するためのシンボル文字列を用いて,提案手法を実験的に検討した。
論文 参考訳(メタデータ) (2022-01-27T17:41:28Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
本稿では,データから学ぶための凸解析フレームワークを提案する。
三角凸分解はその上部に対応する変換によって保証されることを示す。
論文 参考訳(メタデータ) (2021-09-17T17:46:12Z) - 3D Shape Registration Using Spectral Graph Embedding and Probabilistic
Matching [24.41451985857662]
本稿では,3次元形状登録の問題に対処し,スペクトルグラフ理論と確率的マッチングに基づく新しい手法を提案する。
この章の主な貢献は、スペクトルグラフマッチング法をラプラシアン埋め込みと組み合わせることで、非常に大きなグラフに拡張することである。
論文 参考訳(メタデータ) (2021-06-21T15:02:31Z) - Cloud2Curve: Generation and Vectorization of Parametric Sketches [109.02932608241227]
スケーラブルな高分解能ベクトルスケッチ生成モデルであるCloud2Curveを提案する。
我々はQuick, Draw!でモデルの生成とベクトル化能力を評価する。
そしてKMNISTデータセット。
論文 参考訳(メタデータ) (2021-03-29T12:09:42Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
グラフ信号定常性の概念に依存するオフライン手法を提案する。
我々の検出器は、漸近的でない不等式オラクルの証拠を伴っている。
論文 参考訳(メタデータ) (2020-06-18T15:51:38Z) - Characteristic Functions on Graphs: Birds of a Feather, from Statistical
Descriptors to Parametric Models [8.147652597876862]
本稿では,特徴関数の特定の変量を計算するための計算効率の良いアルゴリズムであるFEATHERを紹介する。
FEATHERによって抽出された機能は、ノードレベルの機械学習タスクに有用である、と我々は主張する。
実世界の大規模データセットを用いた実験により,提案アルゴリズムが高品質な表現を生成することを示す。
論文 参考訳(メタデータ) (2020-05-16T11:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。