論文の概要: Physics Informed Deep Learning for Strain Gradient Continuum Plasticity
- arxiv url: http://arxiv.org/abs/2408.06657v1
- Date: Tue, 13 Aug 2024 06:02:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:26:42.310679
- Title: Physics Informed Deep Learning for Strain Gradient Continuum Plasticity
- Title(参考訳): ひずみ勾配連続塑性の物理インフォームド深層学習
- Authors: Ankit Tyagi, Uttam Suman, Mariya Mamajiwala, Debasish Roy,
- Abstract要約: 我々は、物理情報深層学習に基づく時空間離散化を用いて、速度依存ひずみ勾配塑性モデルの解を近似する。
物理情報ニューラルネットワークからインスピレーションを得て、PIDLモデルの損失関数をいくつかの新しい方法で修正する。
本稿では, PIDL法がひずみ可塑性モデルによって生じる計算問題にどのように対処できるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use a space-time discretization based on physics informed deep learning (PIDL) to approximate solutions of a class of rate-dependent strain gradient plasticity models. The differential equation governing the plastic flow, the so-called microforce balance for this class of yield-free plasticity models, is very stiff, often leading to numerical corruption and a consequent lack of accuracy or convergence by finite element (FE) methods. Indeed, setting up the discretized framework, especially with an elaborate meshing around the propagating plastic bands whose locations are often unknown a-priori, also scales up the computational effort significantly. Taking inspiration from physics informed neural networks, we modify the loss function of a PIDL model in several novel ways to account for the balance laws, either through energetics or via the resulting PDEs once a variational scheme is applied, and the constitutive equations. The initial and the boundary conditions may either be imposed strictly by encoding them within the PIDL architecture, or enforced weakly as a part of the loss function. The flexibility in the implementation of a PIDL technique often makes for its ready interface with powerful optimization schemes, and this in turn provides for many possibilities in posing the problem. We have used freely available open-source libraries that perform fast, parallel computations on GPUs. Using numerical illustrations, we demonstrate how PIDL methods could address the computational challenges posed by strain gradient plasticity models. Also, PIDL methods offer abundant potentialities, vis-\'a-vis a somewhat straitjacketed and poorer approximant of FE methods, in customizing the formulation as per the problem objective.
- Abstract(参考訳): 本研究では、物理情報深層学習(PIDL)に基づく時空間離散化を用いて、速度依存性のひずみ勾配塑性モデルの解を近似する。
可塑性流を規定する微分方程式、いわゆるマイクロフォースバランスは非常に硬く、しばしば数値的な腐敗と有限要素法(FE)による精度や収束の欠如に繋がる。
実際、離散化フレームワークのセットアップ、特に位置が未知のアプリオリ(a-priori)と呼ばれるプロパゲーションプラスチックバンドを網羅した精巧なメッシュリングは、計算の労力を大幅に増大させる。
物理情報ニューラルネットワークからインスピレーションを得て、PIDLモデルの損失関数をいくつかの新しい方法で修正し、変動スキームが適用されれば、エネルギーまたは結果のPDEを通してバランス法則を考慮し、構成方程式を導出する。
初期条件と境界条件は、PIDLアーキテクチャ内でそれらをエンコードすることで厳格に課されるか、損失関数の一部として弱強制される。
PIDL技術の実装における柔軟性は、しばしば強力な最適化スキームを備えた準備の整ったインターフェースに適合する。
我々は、GPU上で高速で並列計算を行うオープンソースライブラリを無料で使用しています。
数値図解を用いて, PIDL法がひずみ勾配塑性モデルによって生じる計算課題にどのように対処できるかを示す。
また、PIDL法は、問題の目的に応じて定式化をカスタマイズする際、vis-\'a-visはやや不安定で、FE法の近似が劣っている。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
本稿では,物理インフォームドニューラルネットワーク(PINN),従来のニューラルネットワーク(NN),および微分方程式(DE)に関する従来の数値離散化法を比較した。
我々は,ソフト制約のPINNアプローチに注目し,その数学的枠組みと計算フローを正規Dsと部分Dsの解法として定式化した。
我々は、PINNのDeepXDEベースの実装が、トレーニングにおいて軽量コードであり、効率的なだけでなく、CPU/GPUプラットフォーム間で柔軟なことを実証した。
論文 参考訳(メタデータ) (2024-08-19T13:02:06Z) - Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator [0.0]
DeepDeepONetは、レンダリングフラックスDEを高速化する強力なツールとして登場した。
我々は、入力ペア出力の観測を伴わずにこのマッピングを実現するために、Physical-In DeepONets (PI-DeepONets) を用いている。
論文 参考訳(メタデータ) (2023-07-03T21:10:30Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。