論文の概要: FLoD: Integrating Flexible Level of Detail into 3D Gaussian Splatting for Customizable Rendering
- arxiv url: http://arxiv.org/abs/2408.12894v2
- Date: Wed, 11 Jun 2025 04:18:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.518252
- Title: FLoD: Integrating Flexible Level of Detail into 3D Gaussian Splatting for Customizable Rendering
- Title(参考訳): FLoD: カスタマイズ可能なレンダリングのためのフレキシブルな詳細レベルを3Dガウススプレイティングに統合する
- Authors: Yunji Seo, Young Sun Choi, Hyun Seung Son, Youngjung Uh,
- Abstract要約: 3DGSのためのフレキシブル・レベル・オブ・ディテール(FLoD)を提案する。
FLoDは、レベル固有の3Dスケール制約を通じて、マルチレベル3DGS表現を構成する。
レベルごとのトレーニング戦略を導入し、レベル間の構造的一貫性を確保する。
実験によると、FLoDは、品質とメモリ使用量のトレードオフを伴う様々なレンダリングオプションを提供する。
- 参考スコア(独自算出の注目度): 8.838958391604175
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) and its subsequent works are restricted to specific hardware setups, either on only low-cost or on only high-end configurations. Approaches aimed at reducing 3DGS memory usage enable rendering on low-cost GPU but compromise rendering quality, which fails to leverage the hardware capabilities in the case of higher-end GPU. Conversely, methods that enhance rendering quality require high-end GPU with large VRAM, making such methods impractical for lower-end devices with limited memory capacity. Consequently, 3DGS-based works generally assume a single hardware setup and lack the flexibility to adapt to varying hardware constraints. To overcome this limitation, we propose Flexible Level of Detail (FLoD) for 3DGS. FLoD constructs a multi-level 3DGS representation through level-specific 3D scale constraints, where each level independently reconstructs the entire scene with varying detail and GPU memory usage. A level-by-level training strategy is introduced to ensure structural consistency across levels. Furthermore, the multi-level structure of FLoD allows selective rendering of image regions at different detail levels, providing additional memory-efficient rendering options. To our knowledge, among prior works which incorporate the concept of Level of Detail (LoD) with 3DGS, FLoD is the first to follow the core principle of LoD by offering adjustable options for a broad range of GPU settings. Experiments demonstrate that FLoD provides various rendering options with trade-offs between quality and memory usage, enabling real-time rendering under diverse memory constraints. Furthermore, we show that FLoD generalizes to different 3DGS frameworks, indicating its potential for integration into future state-of-the-art developments.
- Abstract(参考訳): 3D Gaussian Splatting(3DGS)とその後続の作業は、低コストまたはハイエンド構成でのみ、特定のハードウェア設定に限定される。
3DGSメモリ使用量の削減を目的としたアプローチは、低コストのGPUでのレンダリングを可能にするが、レンダリング品質を損なう。
逆に、レンダリング品質を向上させる方法は、大きなVRAMを持つハイエンドGPUを必要とするため、メモリ容量が制限されたローエンドデバイスでは、そのような手法は実用的ではない。
結果として、3DGSベースの作業は通常、単一のハードウェアセットアップを前提としており、様々なハードウェア制約に適応する柔軟性が欠如している。
この制限を克服するため、3DGSのためのフレキシブル・レベル・オブ・ディテール(FLoD)を提案する。
FLoDは、レベル固有の3Dスケールの制約を通じてマルチレベルな3DGS表現を構築する。
レベルごとのトレーニング戦略を導入し、レベル間の構造的一貫性を確保する。
さらに、FLoDのマルチレベル構造は、異なるディテールレベルで画像領域の選択的レンダリングを可能にし、追加のメモリ効率のレンダリングオプションを提供する。
我々の知る限り、LoD(Level of Detail)の概念を3DGSに取り入れた以前の作品の中で、FLoDは、幅広いGPU設定の調整可能なオプションを提供することで、LoDの中核的な原則に従った最初の作品です。
FLoDは、さまざまなメモリ制約下でリアルタイムレンダリングを可能にするため、品質とメモリ使用量のトレードオフを伴うさまざまなレンダリングオプションを提供する。
さらに、FLoDは様々な3DGSフレームワークに一般化され、将来の最先端開発への統合の可能性を示している。
関連論文リスト
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - MEGA: Memory-Efficient 4D Gaussian Splatting for Dynamic Scenes [49.36091070642661]
本稿では,4DGSのためのメモリ効率フレームワークを提案する。
TechnicolorとNeural 3D Videoのデータセットで約190$times$と125$times$のストレージ削減を実現している。
レンダリング速度とシーン表現の品質を維持し、フィールドに新しい標準を設定する。
論文 参考訳(メタデータ) (2024-10-17T14:47:08Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting [13.653629893660218]
ニューラルレイディアンス場(NeRF)のレンダリング手法の代替として,F3DGS(Facterized 3D Gaussian Splatting)を提案する。
F-3DGSはレンダリング画像に匹敵する品質を維持しながら、ストレージコストを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-27T11:55:49Z) - EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation [29.334665494061113]
能率GS」は3DGSを高解像度で大規模なシーンに最適化する高度なアプローチである。
3DGSの密度化過程を解析し,ガウスの過剰増殖領域を同定した。
本稿では,ガウス的増加を重要な冗長プリミティブに制限し,表現効率を向上する選択的戦略を提案する。
論文 参考訳(メタデータ) (2024-04-19T10:32:30Z) - CityGaussian: Real-time High-quality Large-Scale Scene Rendering with Gaussians [64.6687065215713]
CityGaussianは、大規模な3DGSのトレーニングとレンダリングを効率化するために、新しい分別/分別トレーニングアプローチとLevel-of-Detail(LoD)戦略を採用している。
我々のアプローチは最先端のレンダリング品質を実現し、大規模なシーンを全く異なるスケールで一貫したリアルタイムレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-04-01T14:24:40Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.80822249039235]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z) - EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS [40.94643885302646]
3Dガウシアンスプラッティング(3D-GS)は、ノベルビューシーンの合成で人気がある。
レイディアンス・ニューラル・フィールド(NeRF)に関連する長いトレーニング時間と遅いレンダリング速度の課題に対処する。
本稿では,メモリ単位の記憶容量を大幅に削減するために,量子化埋め込みを利用する手法を提案する。
論文 参考訳(メタデータ) (2023-12-07T18:59:55Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
本研究では,3次元ガウス点数を削減するための学習可能なマスク戦略を提案する。
また、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2023-11-22T20:31:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。