論文の概要: Complexity of Quantum-Mechanical Evolutions from Probability Amplitudes
- arxiv url: http://arxiv.org/abs/2408.14241v1
- Date: Mon, 26 Aug 2024 12:54:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:01:29.213647
- Title: Complexity of Quantum-Mechanical Evolutions from Probability Amplitudes
- Title(参考訳): 確率振幅からの量子力学進化の複雑さ
- Authors: Carlo Cafaro, Leonardo Rossetti, Paul M. Alsing,
- Abstract要約: 本研究では,フビニ・スタディ計量を備えたブロッホ球面上の任意のソースとターゲット状態とを接続する時間-最適および時間-最適量子ハミルトン進化の複雑さについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the complexity of both time-optimal and time sub-optimal quantum Hamiltonian evolutions connecting arbitrary source and a target states on the Bloch sphere equipped with the Fubini-Study metric. This investigation is performed in a number of steps. First, we describe each unitary Schr\"odinger quantum evolution by means of the path length, the geodesic efficiency, the speed efficiency, and the curvature coefficient of its corresponding dynamical trajectory linking the source state to the target state. Second, starting from a classical probabilistic setting where the so-called information geometric complexity can be employed to describe the complexity of entropic motion on curved statistical manifolds underlying the physics of systems when only partial knowledge about them is available, we transition into a deterministic quantum setting. In this context, after proposing a definition of the complexity of a quantum evolution, we present a notion of quantum complexity length scale. In particular, we discuss the physical significance of both quantities in terms of the accessed (i.e., partial) and accessible (i.e., total) parametric volumes of the regions on the Bloch sphere that specify the quantum mechanical evolution from the source to the target states. Fourth, after calculating the complexity measure and the complexity length scale for each one of the two quantum evolutions, we compare the behavior of our measures with that of the path length, the geodesic efficiency, the speed efficiency, and the curvature coefficient. We find that, in general, efficient quantum evolutions are less complex than inefficient evolutions. However, we also observe that complexity is more than length. Indeed, longer paths that are sufficiently bent can exhibit a behavior that is less complex than that of shorter paths with a smaller curvature coefficient.
- Abstract(参考訳): 本研究では,フビニ・スタディ計量を備えたブロッホ球面上の任意のソースとターゲット状態とを接続する時間-最適および時間-最適量子ハミルトン進化の複雑さについて検討する。
この調査はいくつかのステップで行われます。
まず、経路長、測地効率、速度効率、およびソース状態と対象状態とをリンクする対応する動的軌跡の曲率による各ユニタリSchr\"odinger量子進化を記述する。
第2に、いわゆる情報幾何学的複雑性を用いて、系の物理学の基礎となる曲線統計多様体上のエントロピー運動の複雑さを記述する古典的確率論的設定から、それらに関する部分的知識のみが利用可能であるときに、決定論的量子設定に遷移する。
この文脈では、量子進化の複雑さの定義を提案した後、量子複雑性長スケールの概念を提示する。
特に、アクセスされた領域(部分的)とアクセス可能な領域(全体的)のパラメトリックボリュームの両量の物理的意義を議論する。
第4に, 2つの量子進化のそれぞれについて, 複雑度と複雑度を計算した後, その挙動を経路長, 測地効率, 速度効率, 曲率係数と比較した。
一般に、効率的な量子進化は非効率的な進化よりも複雑ではない。
しかし、複雑さは長さ以上であることも観察する。
実際、十分に曲げられた長い経路は、曲率の小さい短い経路よりも複雑でない挙動を示すことができる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Walks on Simplicial Complexes and Harmonic Homology: Application to Topological Data Analysis with Superpolynomial Speedups [9.538251541300028]
ラプラシアン(Laplacian)は、スペクトル特性が基礎となる単体錯体を反映する重要な数学的対象である。
以上の結果から,大規模データセットの量子オラクルを必要とせずに,量子ウォークによる超ポリノミカル量子スピードアップを実現した。
論文 参考訳(メタデータ) (2024-04-23T18:00:17Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
複雑な量子系のエルゴード定常状態への進化に関する重要な予想は、スクランブルとして知られるこの過程が最も効率的であるときに普遍的な特徴を取得することである。
このシナリオでは、完全なスクランブルダイナミクスに沿ったスペクトル相関の正確な自己相似性を具現化して、スペクトル統計量に対する単一パラメータスケーリング理論を開発する。
スケーリング予測は特権プロセスで一致し、他の動的スクランブルシナリオのバウンダリとして機能し、すべてのタイムスケールで非効率または不完全なスクランブルを定量化できるようにする。
論文 参考訳(メタデータ) (2023-10-17T15:41:50Z) - Quantum complexity phase transitions in monitored random circuits [0.29998889086656577]
監視されたランダム回路における量子状態複雑性のダイナミクスについて検討する。
正確な量子状態の複雑性の進化は、測定率を変更する際に相転移を起こす。
論文 参考訳(メタデータ) (2023-05-24T18:00:11Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
本研究では, 連続測定による単一粒子の絡み合いについて検討した。
中間時間スケールでの絡み合いは測定強度の関数と同じ定性的挙動を示す。
論文 参考訳(メタデータ) (2023-04-06T09:45:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
最大70個の超伝導量子ビット上の測定誘起量子情報相について検討した。
二重性マッピングを用いて、中間回路の測定を回避し、基礎となる位相の異なる表現にアクセスする。
我々の研究は、現在のNISQプロセッサの限界であるスケールでの計測誘起物理を実現するためのアプローチを示す。
論文 参考訳(メタデータ) (2023-03-08T18:41:53Z) - Qubit Geodesics on the Bloch Sphere from Optimal-Speed Hamiltonian
Evolutions [0.0]
単一量子状態の量子進化から生じる軌道の測地学的解析について述べる。
光線空間の測地線を最小長の経路として見ることに加えて、単位幾何学的効率と消滅幾何学的位相の観点から経路の測地性を検証する。
論文 参考訳(メタデータ) (2022-10-17T14:44:03Z) - Complexity of Pure and Mixed Qubit Geodesic Paths on Curved Manifolds [0.0]
本稿では,純粋および混合状態における量子系の進化の複雑な振る舞いを記述し,理解するための情報幾何学的構造を提案する。
我々は、ブロッホ球における混合量子状態の進化は、ブロッホ球上の純粋な状態の進化よりも複雑であることを示した。
論文 参考訳(メタデータ) (2022-09-21T21:11:31Z) - Saturation and recurrence of quantum complexity in random local quantum
dynamics [5.803309695504831]
量子複雑性 (quantum complexity) とは、与えられた状態またはユニタリチャネルを作成するのに必要な基本演算数の最小値である。
Brown と Susskind は、カオス量子系の複雑性は、系のサイズが最大値で飽和し、二重指数時間で再帰するまでの間、線形に成長すると予想した。
論文 参考訳(メタデータ) (2022-05-19T17:42:31Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。