論文の概要: High-Precision Multi-Qubit Clifford+T Synthesis by Unitary Diagonalization
- arxiv url: http://arxiv.org/abs/2409.00433v4
- Date: Tue, 18 Mar 2025 20:35:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:19:59.446393
- Title: High-Precision Multi-Qubit Clifford+T Synthesis by Unitary Diagonalization
- Title(参考訳): ユニタリ対角化による高精度マルチクビットクリフォード+T合成
- Authors: Mathias Weiden, Justin Kalloor, Ed Younis, John Kubiatowicz, Costin Iancu,
- Abstract要約: クリフォード+Tゲートセットで表される量子回路の資源効率と高精度な近似合成は、フォールトトレラント量子コンピューティングにとって不可欠である。
探索に基づく手法を利用して、まずはユニタリを概略対角化し、解析的に逆解析する。
提案手法は,実量子アルゴリズムからユニタリを評価した場合に,一桁のオーダーで合成アルゴリズムの実装精度と実行時間を向上する。
- 参考スコア(独自算出の注目度): 0.8341988468339112
- License:
- Abstract: Resource-efficient and high-precision approximate synthesis of quantum circuits expressed in the Clifford+T gate set is vital for Fault-Tolerant quantum computing. Efficient optimal methods are known for single-qubit $R_Z$ unitaries, otherwise the problem is generally intractable. Search-based methods, like simulated annealing, empirically generate low resource cost approximate implementations of general multi-qubit unitaries so long as low precision (Hilbert-Schmidt distances of $\epsilon \geq 10^{-2}$) can be tolerated. These algorithms build up circuits that directly invert target unitaries. We instead leverage search-based methods to first approximately diagonalize a unitary, then perform the inversion analytically. This lets difficult continuous rotations be bypassed and handled in a post-processing step. Our approach improves both the implementation precision and run time of synthesis algorithms by orders of magnitude when evaluated on unitaries from real quantum algorithms. On benchmarks previously synthesizable only with analytical techniques like the Quantum Shannon Decomposition, diagonalization uses an average of 95% fewer non-Clifford gates.
- Abstract(参考訳): クリフォード+Tゲートセットで表される量子回路の資源効率と高精度な近似合成は、フォールトトレラント量子コンピューティングにとって不可欠である。
効率的な最適手法は単一キュービット$R_Z$ユニタリで知られており、そうでなければ問題は一般に難解である。
シミュレーションアニーリングのような探索に基づく手法は、低精度($\epsilon \geq 10^{-2}$のヒルベルト・シュミット距離)で許容できる限り、一般的なマルチキュービットユニタリの低コスト近似実装を実証的に生成する。
これらのアルゴリズムは、ターゲットのユニタリを直接逆転する回路を構築する。
代わりに、探索に基づく手法を利用して、まずはユニタリを概略対角化し、解析的に逆解析する。
これにより、困難な連続的なローテーションをバイパスし、後処理のステップで処理することができる。
提案手法は,実量子アルゴリズムからユニタリを評価した場合に,一桁のオーダーで合成アルゴリズムの実装精度と実行時間を向上する。
以前は量子シャノン分解のような分析技術でのみ合成可能なベンチマークでは、対角化は平均95%の非クリフォードゲートを使用する。
関連論文リスト
- Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Improving Quantum Circuit Synthesis with Machine Learning [0.7894596908025954]
機械学習をユニタリデータセットに適用することで、合成アルゴリズムの大幅な高速化が可能になることを示す。
本稿では,学習モデルを用いたシード合成アルゴリズムQSeedについて述べる。
論文 参考訳(メタデータ) (2023-06-09T01:53:56Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
繰り返し改善戦略において量子アニーリングを利用するために,整数最適化問題のイジング定式化を提案する。
基底状態と候補解との重なりがしきい値を超えた場合, 完全に連結されたフェロポッツモデルに対して一階相転移を回避できることを解析的に示す。
論文 参考訳(メタデータ) (2022-11-08T02:12:49Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
雑音は量子回路のバイアスによる目的関数の評価を行う。
我々は、欠落した保証を導き、収束率が影響を受けないことを見出す。
論文 参考訳(メタデータ) (2022-09-21T19:18:41Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - Gaussian Elimination versus Greedy Methods for the Synthesis of Linear
Reversible Circuits [0.0]
可逆回路は、量子コンピューティングに多くの応用がある可逆回路のサブクラスを表す。
ガウス除去アルゴリズムの最適化版と調整LU分解を用いて,任意の線形可逆作用素に対する新しいアルゴリズムを提案する。
全体として、我々のアルゴリズムは特定の問題サイズに対する最先端の手法を改善している。
論文 参考訳(メタデータ) (2022-01-17T16:31:42Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。