論文の概要: Exploring the ability of the Deep Ritz Method to model strain localization as a sharp discontinuity
- arxiv url: http://arxiv.org/abs/2409.13241v1
- Date: Fri, 20 Sep 2024 05:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 11:18:04.199626
- Title: Exploring the ability of the Deep Ritz Method to model strain localization as a sharp discontinuity
- Title(参考訳): ひずみ定位を急激な不連続性としてモデル化するDeep Ritz法の適用可能性を探る
- Authors: Omar León, Víctor Rivera, Angel Vázquez-Patiño, Jacinto Ulloa, Esteban Samaniego,
- Abstract要約: 弾塑性固体の変種設定において, 規則化された強不連続キネマティクスを用いる。
ニューラルネットワーク(ANN)を用いて,対応する数学的モデルを識別する
概念実証として、1次元および2次元の数値例を通して、弾塑性固体のひずみ局在の計算モデルが実現可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an exploratory study of the possibilities of the Deep Ritz Method (DRM) for the modeling of strain localization in solids as a sharp discontinuity in the displacement field. For this, we use a regularized strong discontinuity kinematics within a variational setting for elastoplastic solids. The corresponding mathematical model is discretized using Artificial Neural Networks (ANNs). The architecture takes care of the kinematics, while the variational statement of the boundary value problem is taken care of by the loss function. The main idea behind this approach is to solve both the equilibrium problem and the location of the localization band by means of trainable parameters in the ANN. As a proof of concept, we show through both 1D and 2D numerical examples that the computational modeling of strain localization for elastoplastic solids within the framework of DRM is feasible.
- Abstract(参考訳): 本研究では, 変位場における急激な不連続性として固体中のひずみ局在をモデル化するためのDeep Ritz Method (DRM) の可能性について探索的検討を行った。
このために、弾塑性固体の変種設定において、正則化された強不連続キネマティクスを用いる。
対応する数学的モデルは、ニューラルネットワーク(ANN)を用いて離散化される。
アーキテクチャはキネマティクスを処理し、境界値問題の変分文は損失関数によって処理される。
このアプローチの背景にある主な考え方は、ANNのトレーニング可能なパラメータを用いて、平衡問題と局所化帯域の位置の両方を解決することである。
概念実証として,DRM の枠組み内での弾塑性固体のひずみ局在の計算モデルが実現可能であることを示す。
関連論文リスト
- Symmetry-regularized neural ordinary differential equations [0.0]
本稿では,隠れ状態のダイナミクスとバック伝播のダイナミクスの両方において,Lie対称性を用いたニューラルODEの新たな保存関係を提案する。
これらの保存法則は、損失関数にさらなる正規化項として組み込まれ、モデルの物理的解釈可能性や一般化可能性を高める可能性がある。
これらの保存関係から新たな損失関数を構築し、典型的なモデリングタスクにおける対称性規則化ニューラル・オードの適用性を示す。
論文 参考訳(メタデータ) (2023-11-28T09:27:44Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
弾性インバージョンのための新しいUNetベースニューラルネットワークモデル(El-UNet)を開発した。
完全接続された物理インフォームドニューラルネットワークと比較して,El-UNetによる精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T23:35:03Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - On Convergence of Training Loss Without Reaching Stationary Points [62.41370821014218]
ニューラルネットワークの重み変数は、損失関数の勾配が消える定常点に収束しないことを示す。
エルゴード理論の力学系に基づく新しい視点を提案する。
論文 参考訳(メタデータ) (2021-10-12T18:12:23Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
完全な波形反転は高分解能地下モデルを生成する。
最小二乗関数を持つFWIは、局所ミニマ問題のような多くの欠点に悩まされる。
偏微分方程式とニューラルネットワークを用いた最近の研究は、2次元FWIに対して有望な性能を示している。
本稿では,波動方程式を識別ネットワークに統合し,物理的に一貫したモデルを正確に推定する,教師なし学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-09-23T15:54:40Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
勾配降下法(SGD)を訓練した深部ニューラルネットワークの限界ダイナミクスについて検討する。
これらのダイナミクスを駆動する重要な要素は、本来のトレーニング損失ではなく、位相空間の振動を引き起こす速度と確率電流を暗黙的に規則化する修正損失の組み合わせであることを示す。
論文 参考訳(メタデータ) (2021-07-19T20:18:57Z) - Optimization Induced Equilibrium Networks [76.05825996887573]
暗黙の方程式によって定義されるディープニューラルネットワーク(DNN)のような暗黙の平衡モデルは最近ますます魅力的になりつつある。
我々は,パラメータが少ない場合でも,OptEqが従来の暗黙的モデルより優れていることを示す。
論文 参考訳(メタデータ) (2021-05-27T15:17:41Z) - MORPH-DSLAM: Model Order Reduction for PHysics-based Deformable SLAM [0.0]
標準単眼カメラを用いて,ビデオシーケンスから変形可能な物体の3次元変位場を推定する手法を提案する。
実物理で制約された画像の変位と一致したひずみ場と応力場を適切に記述するために,全(おそらく粘弾性)超線型性問題をリアルタイムに解決する。
論文 参考訳(メタデータ) (2020-09-01T17:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。