論文の概要: Multiscale scattered data analysis in samplet coordinates
- arxiv url: http://arxiv.org/abs/2409.14791v1
- Date: Mon, 23 Sep 2024 08:07:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 21:01:15.787313
- Title: Multiscale scattered data analysis in samplet coordinates
- Title(参考訳): サンプルト座標におけるマルチスケール散乱データ解析
- Authors: Sara Avesani, Rüdiger Kempf, Michael Multerer, Holger Wendland,
- Abstract要約: グローバルにサポートされたラジアル基底関数に対するマルチスケールデータ分散スキームについて検討する。
結果の一般化されたヴァンダーモンド行列をサンプル座標で表現することを提案する。
各レベルにおける線形系の条件数は、特定のレベルとは独立に有界であることを証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study multiscale scattered data interpolation schemes for globally supported radial basis functions, with a focus on the Mat\'ern class. The multiscale approximation is constructed through a sequence of residual corrections, where radial basis functions with different lengthscale parameters are employed to capture varying levels of detail. To apply this approach to large data sets, we suggest to represent the resulting generalized Vandermonde matrices in samplet coordinates. Samplets are localized, discrete signed measures exhibiting vanishing moments and allow for the sparse approximation of generalized Vandermonde matrices issuing from a vast class of radial basis functions. Given a quasi-uniform set of $N$ data sites, and local approximation spaces with geometrically decreasing dimension, the full multiscale system can be assembled with cost $\mathcal{O}(N \log N)$. We prove that the condition numbers of the linear systems at each level remain bounded independent of the particular level, allowing us to use an iterative solver with a bounded number of iterations for the numerical solution. Hence, the overall cost of the proposed approach is $\mathcal{O}(N \log N)$. The theoretical findings are accompanied by extensive numerical studies in two and three spatial dimensions.
- Abstract(参考訳): グローバルにサポートされたラジアル基底関数に対するマルチスケール分散データ補間スキームについて検討し、Mat\'ernクラスに着目した。
多重スケール近似は残差補正によって構成され、異なる長さスケールパラメータを持つ放射基底関数を用いて様々な詳細レベルを捉える。
このアプローチを大規模データセットに適用するために、サンプル座標における一般化されたヴァンダーモンド行列を表現することを提案する。
サンプレットは局所化され、消滅モーメントを示す離散符号付き測度であり、広範囲の放射基底関数から発行される一般化ヴァンダーモンド行列のスパース近似を可能にする。
N$のデータサイトと、幾何学的に減少する次元を持つ局所近似空間の準一様集合が与えられたとき、全マルチスケールシステムはコスト$\mathcal{O}(N \log N)$で組み立てることができる。
各レベルにおける線形系の条件数は、特定のレベルとは独立に有界であり、数値解に対して有界な反復数を持つイテレーティブソルバを使用できることを証明した。
したがって、提案手法の全体的なコストは$\mathcal{O}(N \log N)$である。
理論的には2次元と3次元の広い数値的な研究が伴う。
関連論文リスト
- Polynomial-Time Solutions for ReLU Network Training: A Complexity
Classification via Max-Cut and Zonotopes [70.52097560486683]
我々は、ReLUネットワークの近似の難しさがマックス・カッツ問題の複雑さを反映しているだけでなく、特定の場合において、それと完全に一致することを証明した。
特に、$epsilonleqsqrt84/83-1approx 0.006$とすると、目的値に関して相対誤差$epsilon$でReLUネットワーク対象の近似グローバルデータセットを見つけることはNPハードであることが示される。
論文 参考訳(メタデータ) (2023-11-18T04:41:07Z) - Samplet basis pursuit: Multiresolution scattered data approximation with sparsity constraints [0.0]
我々は,$ell_1$-regularization を用いたサンプルト座標における分散データ近似について検討する。
Riesz isometry を用いて、標本を再現されたカーネルヒルベルト空間に埋め込む。
組込みサンプルベースに対してスパースな信号のクラスは、カーネル翻訳の基盤に関してスパースな信号のクラスよりもかなり大きいと論じる。
論文 参考訳(メタデータ) (2023-06-16T21:20:49Z) - Approximating a RUM from Distributions on k-Slates [88.32814292632675]
与えられた分布を平均で最もよく近似するRUMを求める一般化時間アルゴリズムを求める。
我々の理論的結果は、実世界のデータセットに効果的でスケール可能なものを得るという、実践的な結果も得られます。
論文 参考訳(メタデータ) (2023-05-22T17:43:34Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
対称正定値多様体(SPD)上の関数の最小化のための低複素性アルゴリズムを開発する。
提案手法は、慎重に選択された部分空間を利用して、更新をイテレートのコレスキー因子とスパース行列の積として記述することができる。
論文 参考訳(メタデータ) (2023-05-03T11:11:46Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Bayesian Hyperbolic Multidimensional Scaling [2.5944208050492183]
低次元多様体が双曲型であるとき、多次元スケーリングに対するベイズ的アプローチを提案する。
ケース制御可能性近似は、より大きなデータ設定における後部分布からの効率的なサンプリングを可能にする。
提案手法は,シミュレーション,標準基準データセット,インディアン村のネットワークデータ,およびヒトの遺伝子発現データを用いて,最先端の代替手法に対して評価する。
論文 参考訳(メタデータ) (2022-10-26T23:34:30Z) - Generalization Bounds for Stochastic Gradient Descent via Localized
$\varepsilon$-Covers [16.618918548497223]
本稿では,SGDの軌道に局在する新しい被覆手法を提案する。
このローカライゼーションは、境界数によって測定されるアルゴリズム固有のクラスタリングを提供する。
これらの結果は様々な文脈で導き出され、既知の最先端のラベルレートが向上する。
論文 参考訳(メタデータ) (2022-09-19T12:11:07Z) - Local versions of sum-of-norms clustering [77.34726150561087]
本手法はボールモデルにおいて任意に閉じた球を分離できることを示す。
我々は、不連結連結集合のクラスタリングで発生する誤差に定量的な有界性を証明した。
論文 参考訳(メタデータ) (2021-09-20T14:45:29Z) - Multiscale regression on unknown manifolds [13.752772802705978]
マルチスケールで$mathcalM$に低次元座標を構築し、ローカルフィッティングによるマルチスケール回帰を行います。
本手法の一般化誤差を,事前のリッチクラス上で高い確率で有限サンプル境界を証明することによって解析する。
私たちのアルゴリズムは、サンプルサイズの準線形複雑性を持ち、定数は$D$で、指数は$d$です。
論文 参考訳(メタデータ) (2021-01-13T15:14:31Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
ktimes k$, rank-r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ sample。
我々は、$cal O(frackrepsilon2log2fracepsilon)$ sample, a number linear in the high dimension, and almost linear in the matrices, usually low, rank proofs.というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-30T19:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。