論文の概要: A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization
- arxiv url: http://arxiv.org/abs/2409.18371v2
- Date: Wed, 04 Dec 2024 21:54:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:37:58.062400
- Title: A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization
- Title(参考訳): 分布外一般化を伴う圧縮性オイラー方程式に対するモデル制約不連続ガレルキンネットワーク(DGNet)
- Authors: Hai V. Nguyen, Jau-Uei Chen, Tan Bui-Thanh,
- Abstract要約: 本稿では,モデル制約付き不連続なGalerkin Network (DGNet) アプローチを提案する。
DGNetの中核は、いくつかの重要な戦略のシナジーである。
1次元および2次元圧縮可能なオイラー方程式問題に対する包括的数値計算結果を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Real-time accurate solutions of large-scale complex dynamical systems are critically needed for control, optimization, uncertainty quantification, and decision-making in practical engineering and science applications, particularly in digital twin contexts. In this work, we develop a model-constrained discontinuous Galerkin Network (DGNet) approach, a significant extension to our previous work [Model-constrained Tagent Slope Learning Approach for Dynamical Systems], for compressible Euler equations with out-of-distribution generalization. The core of DGNet is the synergy of several key strategies: (i) leveraging time integration schemes to capture temporal correlation and taking advantage of neural network speed for computation time reduction; (ii) employing a model-constrained approach to ensure the learned tangent slope satisfies governing equations; (iii) utilizing a GNN-inspired architecture where edges represent Riemann solver surrogate models and nodes represent volume integration correction surrogate models, enabling capturing discontinuity capability, aliasing error reduction, and mesh discretization generalizability; (iv) implementing the input normalization technique that allows surrogate models to generalize across different initial conditions, geometries, meshes, boundary conditions, and solution orders; and (v) incorporating a data randomization technique that not only implicitly promotes agreement between surrogate models and true numerical models up to second-order derivatives, ensuring long-term stability and prediction capacity, but also serves as a data generation engine during training, leading to enhanced generalization on unseen data. To validate the effectiveness, stability, and generalizability of our novel DGNet approach, we present comprehensive numerical results for 1D and 2D compressible Euler equation problems.
- Abstract(参考訳): 大規模複雑力学系の実時間的正確な解法は、特にデジタル双対文脈において、制御、最適化、不確実性定量化、および意思決定に極めて必要である。
本研究では, モデル制約不連続なGalerkin Network (DGNet) アプローチを開発し, モデル制約付きTagent Slope Learning Approach for Dynamical Systems, for compressible Euler equations with out-of-distriion generalization。
DGNetの中核は、いくつかの重要な戦略のシナジーである。
一 時間積分方式を利用して時間相関を捉え、ニューラルネットワークの速度を利用して計算時間を短縮すること。
二 学習した接地斜面が支配方程式を満たすことを保証するために、モデルに制約のあるアプローチを採用すること。
3) エッジがリーマンソルバサロゲートモデル,ノードがボリューム積分補正サロゲートモデルを表現し,不連続性能力の獲得,エラー低減のエイリアス化,メッシュ離散化の一般化を可能にするGNNインスパイアされたアーキテクチャの利用。
(四)測地、メッシュ、境界条件、解順の異なる初期条件にまたがる代理モデルの一般化を可能にする入力正規化手法の実装。
(v) サロゲートモデルと真の数値モデルとの合意を暗黙的に二階微分まで促進し、長期的安定性と予測能力を確保するとともに、トレーニング中にデータ生成エンジンとして機能し、未知のデータへの一般化を促進するデータランダム化手法を取り入れた。
新しいDGNet手法の有効性, 安定性, 一般化性を検証するため, 1次元および2次元圧縮可能なオイラー方程式問題に対する包括的数値計算結果を提案する。
関連論文リスト
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
本稿では,ODEベクトル場を再パラメータ化するために正規化フローを導入し,データ駆動の事前分布を導出する。
また, GP ODE の後部推定に正規化フローを適用し, 強平均場仮定の問題を解く。
シミュレーション力学系と実世界の人間の動作データに対するアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-17T09:28:47Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - A graph convolutional autoencoder approach to model order reduction for
parametrized PDEs [0.8192907805418583]
本稿では,グラフ畳み込みオートエンコーダ(GCA-ROM)に基づく非線形モデルオーダー削減のためのフレームワークを提案する。
我々は、GNNを利用して、圧縮された多様体を符号化し、パラメタライズされたPDEの高速な評価を可能にする、非侵襲的でデータ駆動の非線形還元手法を開発した。
論文 参考訳(メタデータ) (2023-05-15T12:01:22Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。