論文の概要: Embedding an ANN-Based Crystal Plasticity Model into the Finite Element Framework using an ABAQUS User-Material Subroutine
- arxiv url: http://arxiv.org/abs/2410.08214v1
- Date: Wed, 25 Sep 2024 10:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 04:36:03.747324
- Title: Embedding an ANN-Based Crystal Plasticity Model into the Finite Element Framework using an ABAQUS User-Material Subroutine
- Title(参考訳): ABAQUSユーザ・マテリアル・サブルーチンを用いたANN系結晶塑性モデルの有限要素フレームワークへの埋め込み
- Authors: Yuqing He, Yousef Heider, Bernd Markert,
- Abstract要約: 本論文は、ユーザマテリアル(UMAT)サブルーチンを用いて、トレーニングニューラルネットワーク(NN)を有限要素(FE)フレームワークに組み込む実践的な方法を提案する。
この研究は、ABAQUS UMATで広範囲に応用された複雑な非弾性な非線形経路依存材料応答である結晶の塑性を例証する。
- 参考スコア(独自算出の注目度): 3.8090193872025226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This manuscript presents a practical method for incorporating trained Neural Networks (NNs) into the Finite Element (FE) framework using a user material (UMAT) subroutine. The work exemplifies crystal plasticity, a complex inelastic non-linear path-dependent material response, with a wide range of applications in ABAQUS UMAT. However, this approach can be extended to other material behaviors and FE tools. The use of a UMAT subroutine serves two main purposes: (1) it predicts and updates the stress or other mechanical properties of interest directly from the strain history; (2) it computes the Jacobian matrix either through backpropagation or numerical differentiation, which plays an essential role in the solution convergence. By implementing NNs in a UMAT subroutine, a trained machine learning model can be employed as a data-driven constitutive law within the FEM framework, preserving multiscale information that conventional constitutive laws often neglect or average. The versatility of this method makes it a powerful tool for integrating machine learning into mechanical simulation. While this approach is expected to provide higher accuracy in reproducing realistic material behavior, the reliability of the solution process and the convergence conditions must be paid special attention. While the theory of the model is explained in [Heider et al. 2020], exemplary source code is also made available for interested readers [https://doi.org/10.25835/6n5uu50y]
- Abstract(参考訳): 本論文は、ユーザマテリアル(UMAT)サブルーチンを用いて、トレーニングニューラルネットワーク(NN)を有限要素(FE)フレームワークに組み込む実践的な方法を提案する。
この研究は、ABAQUS UMATで広範囲に応用された複雑な非弾性な非線形経路依存材料応答である結晶の塑性を例証する。
しかし、このアプローチは他の物質的挙動やFEツールにも拡張できる。
UMATサブルーチンの使用は、(1)ストレスや関心の機械的特性をひずみ履歴から直接予測し、更新する、(2)バックプロパゲーションまたは数値微分を通じてヤコビ行列を計算する、という2つの主な目的を果たす。
UMATサブルーチンにNNを実装することで、トレーニングされた機械学習モデルをFEMフレームワーク内のデータ駆動構成法則として使用することができ、従来の構成法則が無視または平均的に無視されるようなマルチスケール情報を保存することができる。
この手法の汎用性により、機械学習を機械シミュレーションに統合するための強力なツールとなる。
このアプローチは現実的な物質挙動を再現する上で高い精度が期待できるが、解法プロセスの信頼性と収束条件は特に注意が必要である。
モデルの理論は[Heider et al 2020]で説明されているが、サンプルソースコードは興味のある読者にも利用可能である[https://doi.org/10.25835/6n5uu50y]。
関連論文リスト
- Learning Physics-Consistent Material Behavior Without Prior Knowledge [6.691537914484337]
我々は,畳み込み入力ニューラルネットワーク(ICNN)を代理モデルとして使用することにより,制約を克服するuLEDと呼ばれる機械学習アプローチを導入する。
我々は、ノイズのかなりのレベルに対して頑健であり、データ解像度の増大とともに基礎的な真実に収束することを実証した。
論文 参考訳(メタデータ) (2024-07-25T08:24:04Z) - Symmetric Basis Convolutions for Learning Lagrangian Fluid Mechanics [21.05257407408671]
本稿では,分割可能な基底関数を既存手法のスーパーセットとして用いた連続畳み込みの一般的な定式化を提案する。
基本関数に含まれる偶数および奇数対称性が安定性と精度の重要な側面であることを示す。
論文 参考訳(メタデータ) (2024-03-25T12:15:47Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
本稿では,ガウス過程(GP)モデルの平均関数にメカニクスに基づくモデルを組み込み,カーネルマシンによる潜在的な不一致を特徴付けることを提案する。
カーネル関数の定常性は、階層的ベイズ手法によって解決された長いデータセットの逐次処理において難しいハードルである。
数値および実験例を用いて, 構造力学逆問題に対する提案手法の可能性を示した。
論文 参考訳(メタデータ) (2023-03-01T02:29:41Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Active Learning for Deep Neural Networks on Edge Devices [0.0]
本稿では,エッジデバイス上でのニューラルネットワークの実用的な能動学習問題を定式化する。
本稿では,この問題に対処するための一般的なタスクに依存しないフレームワークを提案する。
我々は,実生活シナリオをシミュレートする実践的な環境で,分類タスクとオブジェクト検出タスクの両方に対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-06-21T03:55:33Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - A machine learning based plasticity model using proper orthogonal
decomposition [0.0]
データ駆動の物質モデルは、古典的な数値的アプローチよりも多くの利点がある。
データ駆動型マテリアルモデルを開発する1つのアプローチは、機械学習ツールを使用することである。
弾性と塑性の両面において,機械学習に基づく材料モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-07T15:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。