論文の概要: Expected Sliced Transport Plans
- arxiv url: http://arxiv.org/abs/2410.12176v1
- Date: Wed, 16 Oct 2024 02:44:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:40:58.590413
- Title: Expected Sliced Transport Plans
- Title(参考訳): 予定されるスライス輸送計画
- Authors: Xinran Liu, Rocío Díaz Martín, Yikun Bai, Ashkan Shahbazi, Matthew Thorpe, Akram Aldroubi, Soheil Kolouri,
- Abstract要約: 本研究では, 1次元の最適輸送計画を, もともとの空間に戻す「揚力」操作を提案する。
本研究では、EST計画を用いて、ある点から別の点へ移動する際のユークリッドの個々のコストの和を重み付けし、入力された離散確率測度間の有効距離を求めることを証明する。
- 参考スコア(独自算出の注目度): 9.33181953215826
- License:
- Abstract: The optimal transport (OT) problem has gained significant traction in modern machine learning for its ability to: (1) provide versatile metrics, such as Wasserstein distances and their variants, and (2) determine optimal couplings between probability measures. To reduce the computational complexity of OT solvers, methods like entropic regularization and sliced optimal transport have been proposed. The sliced OT framework improves efficiency by comparing one-dimensional projections (slices) of high-dimensional distributions. However, despite their computational efficiency, sliced-Wasserstein approaches lack a transportation plan between the input measures, limiting their use in scenarios requiring explicit coupling. In this paper, we address two key questions: Can a transportation plan be constructed between two probability measures using the sliced transport framework? If so, can this plan be used to define a metric between the measures? We propose a "lifting" operation to extend one-dimensional optimal transport plans back to the original space of the measures. By computing the expectation of these lifted plans, we derive a new transportation plan, termed expected sliced transport (EST) plans. We prove that using the EST plan to weight the sum of the individual Euclidean costs for moving from one point to another results in a valid metric between the input discrete probability measures. We demonstrate the connection between our approach and the recently proposed min-SWGG, along with illustrative numerical examples that support our theoretical findings.
- Abstract(参考訳): 最適輸送(OT)問題は、(1)ワッサーシュタイン距離とその変種などの多元的指標を提供し、(2)確率測度間の最適結合を決定する能力において、現代の機械学習において大きな牽引力を得ている。
OTソルバの計算複雑性を低減するため,エントロピー正則化やスライスされた最適輸送法が提案されている。
スライスされたOTフレームワークは、高次元分布の1次元投影(スライス)を比較することで効率を向上する。
しかし、その計算効率にもかかわらず、スライスされたワッサーシュタインアプローチは入力測度間の輸送計画がなく、明示的な結合を必要とするシナリオでの使用を制限する。
本稿では,2つの重要な問題に対処する:スライスされた輸送フレームワークを用いて,2つの確率測度の間に交通計画を構築することができるか?
もしそうなら、この計画は測度間のメートル法を定義するのに使えるだろうか?
本研究では, 1次元の最適輸送計画を, もともとの空間に戻す「揚力」操作を提案する。
これらの揚陸計画の予測を計算することにより、予測スライス輸送(EST)計画と呼ばれる新しい輸送計画が導出される。
本研究では、EST計画を用いて、ある点から別の点へ移動する際のユークリッドの個々のコストの和を重み付けし、入力された離散確率測度間の有効距離を求めることを証明する。
提案手法と最近提案されたmin-SWGGの関連性を実証し, 理論的知見を裏付ける実証的な数値例を示した。
関連論文リスト
- Scalable Unbalanced Sobolev Transport for Measures on a Graph [23.99177001129992]
最適輸送(OT)は確率測度を比較する強力なツールである。
OT にはいくつかの欠点がある: (i) 同じ質量を持つために必要な入力測度、(ii)高い計算複雑性、(iii)不確定性。
Le et al. (2022) は、支持体上のグラフ構造を利用して、同じ総質量のグラフ上の測度に対して、最近ソボレフ輸送を提案した。
提案した不均衡なソボレフ輸送は高速計算のための閉形式式を許容し,また負の定式であることを示す。
論文 参考訳(メタデータ) (2023-02-24T07:35:38Z) - InfoOT: Information Maximizing Optimal Transport [58.72713603244467]
InfoOTは最適な輸送の情報理論の拡張である。
幾何学的距離を最小化しながら、ドメイン間の相互情報を最大化する。
この定式化は、外れ値に対して堅牢な新しい射影法をもたらし、目に見えないサンプルに一般化する。
論文 参考訳(メタデータ) (2022-10-06T18:55:41Z) - Learning Optimal Transport Between two Empirical Distributions with
Normalizing Flows [12.91637880428221]
本稿では、ニューラルネットワークの柔軟性を活用して、最適輸送マップを近似的に学習することを提案する。
我々は、このOT問題の解を近似するために、非可逆ニューラルネットワークの特定の例、すなわち正規化フローが利用できることを示した。
論文 参考訳(メタデータ) (2022-07-04T08:08:47Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
滑らかな条件下では、2つの分布の間の正方形ワッサーシュタイン距離は、魅力的な統計的誤差上界で効率的に計算できる。
生成的モデリングのような応用への関心の対象は、基礎となる最適輸送写像である。
そこで本研究では,地図上の統計的誤差であるL2$が,既存のミニマックス下限値とほぼ一致し,スムーズな地図推定が可能となる最初のトラクタブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-03T13:45:36Z) - Approximating Optimal Transport via Low-rank and Sparse Factorization [19.808887459724893]
最適なトランスポート(OT)は、様々な機械学習アプリケーションで自然に発生するが、しばしば計算ボトルネックとなる。
輸送計画を低ランク行列とスパース行列の和に分解できる新しいOT近似法を提案する。
論文 参考訳(メタデータ) (2021-11-12T03:10:45Z) - Order Constraints in Optimal Transport [6.677646909984405]
本稿では, 構造を組み込むために, 最適輸送の定式化に新しい順序制約を導入する。
最適輸送計画に構造を加えるための説明可能なアプローチを可能にする計算効率の低い境界を導出する。
論文 参考訳(メタデータ) (2021-10-14T11:26:23Z) - Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2
Benchmark [133.46066694893318]
最適輸送のためのニューラルネットワークに基づく解法の性能を評価する。
既存の解法では,下流タスクでは良好に機能するにもかかわらず,最適な輸送マップを復元できないことがわかった。
論文 参考訳(メタデータ) (2021-06-03T15:59:28Z) - BoMb-OT: On Batch of Mini-batches Optimal Transport [23.602237930502948]
ミニバッチ最適輸送(m-OT)は、難縮密度の確率測度を含む実用的な応用に成功している。
我々は,Batch of Mini-batches Optimal Transport (BoMb-OT)という,最適輸送のための新しいミニバッチ方式を提案する。
この新しいミニバッチ方式は,m-OTよりも2つの当初の手段間のよりよい交通計画を推定できることを示す。
論文 参考訳(メタデータ) (2021-02-11T09:56:25Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。