論文の概要: HOUND: High-Order Universal Numerical Differentiator for a Parameter-free Polynomial Online Approximation
- arxiv url: http://arxiv.org/abs/2411.00794v1
- Date: Fri, 18 Oct 2024 13:42:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:31:11.386924
- Title: HOUND: High-Order Universal Numerical Differentiator for a Parameter-free Polynomial Online Approximation
- Title(参考訳): HOUND:パラメータ自由多項式オンライン近似のための高次ユニバーサル数値微分器
- Authors: Igor Katrichek,
- Abstract要約: 本稿では,高次微分方程式系として表される数値微分器を紹介する。
微分器の順序を適度に選択することで、付加的な白色雑音を持つ信号に対して誤差はゼロに収束することを示した。
この数値微分の顕著な利点は、信号の特定の特性に基づいたチューニングパラメータを必要としないことである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces a scalar numerical differentiator, represented as a system of nonlinear differential equations of any high order. We derive the explicit solution for this system and demonstrate that, with a suitable choice of differentiator order, the error converges to zero for polynomial signals with additive white noise. In more general cases, the error remains bounded, provided that the highest estimated derivative is also bounded. A notable advantage of this numerical differentiation method is that it does not require tuning parameters based on the specific characteristics of the signal being differentiated. We propose a discretization method for the equations that implements a cumulative smoothing algorithm for time series. This algorithm operates online, without the need for data accumulation, and it solves both interpolation and extrapolation problems without fitting any coefficients to the data.
- Abstract(参考訳): 本稿では,高次非線形微分方程式系として表されるスカラー数値微分器を提案する。
このシステムの明示的な解を導出し、微分器の順序を適度に選択すると、この誤差は加法的な白色雑音を持つ多項式信号に対してゼロに収束することを示した。
より一般的な場合、最も高い推定された微分も有界であることから、誤差は有界のままである。
この数値微分法の顕著な利点は、信号の特定の特性に基づいたチューニングパラメータを必要としないことである。
本稿では,時系列の累積平滑化アルゴリズムを実装した方程式の離散化法を提案する。
このアルゴリズムはデータの蓄積を必要とせずにオンラインで動作し、データに係数を適合させることなく補間と外挿の問題を解く。
関連論文リスト
- Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
提案手法は, 3次元, 4次, 剛性方程式を含む, 様々な雑音レベルの微分方程式を探索する。
パラメータ推定は変動係数が小さい真の値に正確に収束し、ノイズに頑健性を示す。
論文 参考訳(メタデータ) (2024-10-13T21:48:51Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - WeakIdent: Weak formulation for Identifying Differential Equations using
Narrow-fit and Trimming [5.027714423258538]
弱い定式化を用いて微分方程式を復元する汎用的で堅牢な枠組みを提案する。
各空間レベルに対して、Subspace Pursuitは、大きな辞書から最初のサポートセットを見つけるために使用される。
提案手法は、係数の頑健な回復と、最大で100%のノイズ-信号比を処理できる顕著なデノナイジング効果を与える。
論文 参考訳(メタデータ) (2022-11-06T14:33:22Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Decoupling multivariate functions using a nonparametric filtered tensor
decomposition [0.29360071145551075]
疎結合技術は、非線形性の代替表現を提供することを目的としている。
いわゆる疎結合形式はしばしば、高度に構造化され、解釈可能性を好む一方で、関係のより効率的なパラメータ化である。
本研究では, 1次微分情報のフィルタテンソル分解に基づく2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-23T09:34:17Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
本稿では,最適化アルゴリズムを用いてパラメータ化近似を用いた解を求める手法を提案する。
アルゴリズムのパラメータを変更することなく、幅広い種類の方程式を自動で解くことができる。
論文 参考訳(メタデータ) (2022-05-11T10:06:47Z) - Online Weak-form Sparse Identification of Partial Differential Equations [0.5156484100374058]
本稿では非線形力学アルゴリズム(WSINDy)の弱形式スパース同定に基づく偏微分方程式(PDE)の同定のためのオンラインアルゴリズムを提案する。
この手法のコアは、候補PDEの弱い形状の離散化と、スパース回帰問題に対するオンライン近位勾配降下法を組み合わせたものである。
論文 参考訳(メタデータ) (2022-03-08T10:11:09Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
正規微分方程式(ODE)の解に対する乱射影ニューラルネットワーク(RPNN)に基づく数値スキームを提案する。
提案手法は剛性の影響を受けずに高い数値近似精度を示し,textttode45 と textttode15s の関数よりも優れていた。
論文 参考訳(メタデータ) (2021-08-03T15:49:17Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
ラッソ型問題に適した行列逆転のない効率的な暗黙微分アルゴリズムを提案する。
提案手法は,解の空間性を利用して高次元データにスケールする。
論文 参考訳(メタデータ) (2020-02-20T18:43:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。