論文の概要: Estimating unknown parameters in differential equations with a reinforcement learning based PSO method
- arxiv url: http://arxiv.org/abs/2411.08651v1
- Date: Wed, 13 Nov 2024 14:40:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:14.380698
- Title: Estimating unknown parameters in differential equations with a reinforcement learning based PSO method
- Title(参考訳): 強化学習に基づくPSO法による微分方程式の未知パラメータの推定
- Authors: Wenkui Sun, Xiaoya Fan, Lijuan Jia, Tinyi Chu, Shing-Tung Yau, Rongling Wu, Zhong Wang,
- Abstract要約: 本稿では,粒子の概念を導入することにより,微分方程式のパラメータ推定問題を最適化問題として再検討する。
本稿では、強化学習に基づく粒子群最適化(RLLPSO)に基づいて、微分方程式の未知パラメータを推定する新しい手法DERLPSOを提案する。
実験の結果,DERLPSOは平均1.13e-05の誤差を達成し,他の手法よりも高い性能を示した。
- 参考スコア(独自算出の注目度): 2.9808905403445145
- License:
- Abstract: Differential equations offer a foundational yet powerful framework for modeling interactions within complex dynamic systems and are widely applied across numerous scientific fields. One common challenge in this area is estimating the unknown parameters of these dynamic relationships. However, traditional numerical optimization methods rely on the selection of initial parameter values, making them prone to local optima. Meanwhile, deep learning and Bayesian methods require training models on specific differential equations, resulting in poor versatility. This paper reformulates the parameter estimation problem of differential equations as an optimization problem by introducing the concept of particles from the particle swarm optimization algorithm. Building on reinforcement learning-based particle swarm optimization (RLLPSO), this paper proposes a novel method, DERLPSO, for estimating unknown parameters of differential equations. We compared its performance on three typical ordinary differential equations with the state-of-the-art methods, including the RLLPSO algorithm, traditional numerical methods, deep learning approaches, and Bayesian methods. The experimental results demonstrate that our DERLPSO consistently outperforms other methods in terms of performance, achieving an average Mean Square Error of 1.13e-05, which reduces the error by approximately 4 orders of magnitude compared to other methods. Apart from ordinary differential equations, our DERLPSO also show great promise for estimating unknown parameters of partial differential equations. The DERLPSO method proposed in this paper has high accuracy, is independent of initial parameter values, and possesses strong versatility and stability. This work provides new insights into unknown parameter estimation for differential equations.
- Abstract(参考訳): 微分方程式は、複雑な力学系における相互作用をモデル化するための基礎的だが強力な枠組みを提供し、多くの科学分野に広く応用されている。
この領域の一般的な課題は、これらの動的関係の未知のパラメータを推定することである。
しかし、従来の数値最適化手法は初期パラメータ値の選択に依存しており、局所最適化が困難である。
一方、深層学習とベイズ法は特定の微分方程式の訓練モデルを必要とし、結果として汎用性が劣る。
本稿では,粒子群最適化アルゴリズムから粒子の概念を導入することにより,微分方程式のパラメータ推定問題を最適化問題として再検討する。
本稿では、強化学習に基づく粒子群最適化(RLLPSO)に基づいて、微分方程式の未知パラメータを推定する新しい手法DERLPSOを提案する。
RLLPSOアルゴリズム,従来の数値法,ディープラーニング法,ベイズ法など,3種類の常微分方程式の性能を最先端の手法と比較した。
実験の結果,DerLPSO は平均平均平方誤差 1.13e-05 を達成し,他の手法に比べて約4桁の誤差を低減できることがわかった。
通常の微分方程式とは別に、我々のDERLPSOは偏微分方程式の未知のパラメータを推定する大きな可能性を示す。
本論文で提案するDERLPSO法は, 精度が高く, 初期パラメータ値とは独立であり, 高い汎用性と安定性を有する。
この研究は、微分方程式の未知のパラメータ推定に関する新しい洞察を提供する。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
本稿では,物理インフォームド機械学習フレームワークを用いた分散次分数差分方程式の解法を提案する。
分散階関数式をSVRフレームワークに組み込むことで、物理法則を直接学習プロセスに組み込む。
提案手法の有効性は,Caputo-based distributed-order fractional differential equationsの数値実験を通じて検証した。
論文 参考訳(メタデータ) (2024-09-05T13:20:10Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
我々はPDEをニューラルネットワークとして表現し、物理情報ニューラルネットワーク(PINN)に似た中間状態表現を用いる。
本稿では,この制約付き最適化問題を解くために,ペナルティ法と広く利用されている信頼領域障壁法を提案する。
バーガーズ方程式とコルトヴェーグ・ド・ヴライス方程式に関する我々の結果は、後者の制約付き手法がペナルティ法より優れていることを示している。
論文 参考訳(メタデータ) (2024-05-30T01:55:44Z) - Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations [34.500484733973536]
通常微分方程式(ODE)は科学の力学系を記述するために広く用いられているが、実験的な測定を説明するパラメータを特定することは困難である。
本稿では,ODEにおける勾配に基づくパラメータ最適化の収束性を改善する確率的数値法の新しい正規化手法である拡散テンパリングを提案する。
本手法は複雑性の異なる力学系に対して有効であることを示すとともに,実際に関連するパラメータ数を持つHodgkin-Huxleyモデルに対して,信頼性の高いパラメータ推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-02-19T15:36:36Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Robust SDE-Based Variational Formulations for Solving Linear PDEs via
Deep Learning [6.1678491628787455]
モンテカルロ法とディープラーニングを組み合わせることで、高次元の偏微分方程式(PDE)を解くアルゴリズムが効率的になった。
関連する学習問題は、しばしば関連する微分方程式(SDE)に基づく変分定式化として記述される。
したがって、収束を正確にかつ迅速に到達するためには、低分散を示す適切な勾配推定器に頼ることが重要である。
論文 参考訳(メタデータ) (2022-06-21T17:59:39Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
本稿では,最適化アルゴリズムを用いてパラメータ化近似を用いた解を求める手法を提案する。
アルゴリズムのパラメータを変更することなく、幅広い種類の方程式を自動で解くことができる。
論文 参考訳(メタデータ) (2022-05-11T10:06:47Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。