論文の概要: Efficient Density Control for 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2411.10133v1
- Date: Fri, 15 Nov 2024 12:12:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:14.069254
- Title: Efficient Density Control for 3D Gaussian Splatting
- Title(参考訳): 3次元ガウス平板の高効率密度制御
- Authors: Xiaobin Deng, Changyu Diao, Min Li, Ruohan Yu, Duanqing Xu,
- Abstract要約: より効率的な長軸分割操作を導入し,元のクローンとスプリットを置き換えた。
また,低オプティシティ・ガウス数を削減するため,簡単な適応型プルーニング手法を提案する。
提案手法を,様々な課題のある実世界のデータセット上で評価する。
- 参考スコア(独自算出の注目度): 3.6379656024631215
- License:
- Abstract: 3D Gaussian Splatting (3DGS) excels in novel view synthesis, balancing advanced rendering quality with real-time performance. However, in trained scenes, a large number of Gaussians with low opacity significantly increase rendering costs. This issue arises due to flaws in the split and clone operations during the densification process, which lead to extensive Gaussian overlap and subsequent opacity reduction. To enhance the efficiency of Gaussian utilization, we improve the adaptive density control of 3DGS. First, we introduce a more efficient long-axis split operation to replace the original clone and split, which mitigates Gaussian overlap and improves densification efficiency.Second, we propose a simple adaptive pruning technique to reduce the number of low-opacity Gaussians. Finally, by dynamically lowering the splitting threshold and applying importance weighting, the efficiency of Gaussian utilization is further improved.We evaluate our proposed method on various challenging real-world datasets. Experimental results show that our Efficient Density Control (EDC) can enhance both the rendering speed and quality.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、新しいビュー合成に優れ、高度なレンダリング品質とリアルタイムパフォーマンスのバランスをとる。
しかし、訓練されたシーンでは、不透明度が低い多くのガウス人がレンダリングコストを著しく高めている。
この問題は、密度化過程における分裂とクローン操作の欠陥によって生じるものであり、ガウス的重複とその後の不透明度低減に繋がる。
ガウス利用効率を向上させるため、3DGSの適応密度制御を改善した。
まず,元のクローンと分割を置き換えたより効率的な長軸分割操作を導入し,ガウス重なりを緩和し,密度化効率を向上する。
最後に,分割閾値を動的に下げ,重み付けを施すことにより,ガウス利用の効率をさらに向上させ,様々な課題のある実世界のデータセットに対する提案手法の評価を行った。
実験結果から,高効率密度制御(EDC)はレンダリング速度と品質を両立させることができることがわかった。
関連論文リスト
- AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius [38.774337140911044]
3D Gaussian Splatting (3DGS)は、複雑なシーンの高品質な再構成とリアルタイムレンダリングを実現した、最近の明示的な3D表現である。
本稿では,AdR-Gaussianを提案する。これは並列カリングを実現するために,Renderステージのシリアルカリングの一部を前処理ステージに移動させる。
私たちのコントリビューションは3倍で、レンダリング速度は310%で、最先端技術よりも同等かそれ以上品質を維持しています。
論文 参考訳(メタデータ) (2024-09-13T09:32:38Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
本稿では,処理オーバーヘッドを最小限に抑えた新しい階層化手法を提案する。
提案手法はガウス版よりも平均で4%遅い。
レンダリング性能はほぼ2倍に向上し,従来のガウス版よりも1.6倍高速になった。
論文 参考訳(メタデータ) (2024-02-01T11:46:44Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをよりコンパクトなフォーマットに変換する方法である。
ネットワーク・プルーニングにインスパイアされたLightGaussianは、ガウシアンをシーン再構築において最小限のグローバルな重要性で特定した。
LightGaussian は 3D-GS フレームワークで FPS を 144 から 237 に上げながら,平均 15 倍の圧縮率を達成する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
本稿では,DreamGaussianを提案する。DreamGaussianは,効率と品質を両立させる新しい3Dコンテンツ生成フレームワークである。
我々の重要な洞察は、UV空間におけるメッシュ抽出とテクスチャ改善を伴う3次元ガウススプラッティングモデルを設計することである。
ニューラル・ラジアンス・フィールドにおける占有プルーニングとは対照的に、3次元ガウスの進行的な密度化は3次元生成タスクにおいて著しく速く収束することを示した。
論文 参考訳(メタデータ) (2023-09-28T17:55:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。