論文の概要: Transforming Teacher Education in Developing Countries: The Role of Generative AI in Bridging Theory and Practice
- arxiv url: http://arxiv.org/abs/2411.10718v2
- Date: Tue, 19 Nov 2024 03:36:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:32.300255
- Title: Transforming Teacher Education in Developing Countries: The Role of Generative AI in Bridging Theory and Practice
- Title(参考訳): 発展途上国における教員教育の変容 : ブリッジ理論と実践における生成AIの役割
- Authors: Matthew Nyaaba,
- Abstract要約: この研究はガーナに焦点を当てており、限られた教育モデル、パフォーマンスベースアセスメント、実践者と実践者のギャップといった課題が進歩を妨げる。
GenAIは、コンテンツ知識獲得の支援により、これらの課題に対処する能力を持っている。
この研究は、これらの役割をさらに探求するための実証的研究を推奨し、教員教育システムにGenAIを統合するための実践的なステップを効果的に発展させることで結論付けられた。
- 参考スコア(独自算出の注目度): 0.7416846035207727
- License:
- Abstract: This study examines the transformative potential of Generative AI (GenAI) in teacher education within developing countries, focusing on Ghana, where challenges such as limited pedagogical modeling, performance-based assessments, and practitioner-expertise gaps hinder progress. GenAI has the capacity to address these issues by supporting content knowledge acquisition, a role that currently dominates teacher education programs. By taking on this foundational role, GenAI allows teacher educators to redirect their focus to other critical areas, including pedagogical modeling, authentic assessments, and fostering digital literacy and critical thinking. These roles are interconnected, creating a ripple effect where pre-service teachers (PSTs) are better equipped to enhance K-12 learning outcomes and align education with workforce needs. The study emphasizes that GenAI's roles are multifaceted, directly addressing resistance to change, improving resource accessibility, and supporting teacher professional development. However, it cautions against misuse, which could undermine critical thinking and creativity, essential skills nurtured through traditional teaching methods. To ensure responsible and effective integration, the study advocates a scaffolding approach to GenAI literacy. This includes educating PSTs on its supportive role, training them in ethical use and prompt engineering, and equipping them to critically assess AI-generated content for biases and validity. The study concludes by recommending empirical research to explore these roles further and develop practical steps for integrating GenAI into teacher education systems responsibly and effectively.
- Abstract(参考訳): 本研究では,開発途上国の教員教育におけるジェネレーティブAI(GenAI)の変容の可能性について検討し,教育モデルやパフォーマンスベースアセスメント,実践者と実践者のギャップといった課題が進展を妨げているガーナに焦点を当てた。
GenAIは、コンテンツ知識獲得の支援により、これらの課題に対処する能力を持っている。
この基礎的な役割を担うことで、教師教育者は教育モデル、真の評価、デジタルリテラシーと批判的思考の育成など、他の重要な領域に焦点を移すことができる。
これらの役割は相互に結びつき、プレサービス教員(PST)がK-12学習の成果を向上し、教育を労働ニーズと整合させるような波及効果を生み出す。
この研究は、GenAIの役割が多面的であり、変化への抵抗に直接対処し、リソースアクセシビリティを改善し、教師の専門的開発を支援することを強調している。
しかし、批判的思考や創造性を損なうような誤用に対して、伝統的な教育方法によって育つ必須スキルに注意を払っている。
この研究は、責任と効果的な統合を確保するために、GenAIリテラシーに対する足場的アプローチを提唱している。
これには、PSTを支援的な役割で教育すること、倫理的使用で教育すること、エンジニアリングを促進すること、バイアスと妥当性のためにAI生成コンテンツを批判的に評価することなどが含まれる。
この研究は、これらの役割をさらに探求するための実証的研究を推奨し、教員教育システムにGenAIを統合するための実践的なステップを効果的に発展させることで結論付けられた。
関連論文リスト
- Generative AI and Agency in Education: A Critical Scoping Review and Thematic Analysis [0.0]
本稿では,ジェネレーティブAI(GenAI)と教育機関の関係を概観し,批判的デジタル教育のレンズを通して利用可能な文献を分析した。
我々は,デジタル空間における制御,可変エンゲージメントとアクセシビリティ,代理店の表記変更という3つの重要なテーマを,AIが支援するハイブリッドセマンティック分析によって明らかにした。
この結果から,GenAIは個人化や支援を通じて学習機関を強化できるが,教育の不平等が悪化し,学習者の自律性が低下する危険性も示唆された。
論文 参考訳(メタデータ) (2024-11-01T14:40:31Z) - Transforming Teachers' Roles and Agencies in the Era of Generative AI: Perceptions, Acceptance, Knowledge, and Practices [0.7416846035207727]
本稿では,ジェネレーティブ・人工知能(GenAI)が教員の役割や教育機関に与える影響について考察する。
教員の認識、知識、受容、実践に対処する包括的枠組みを提示する。
論文 参考訳(メタデータ) (2024-10-03T21:59:01Z) - To accept or not to accept? An IRT-TOE Framework to Understand Educators' Resistance to Generative AI in Higher Education [0.0]
本研究は,教育者が教室で生成人工知能を採用するのを防ぐ障壁を実証的に予測する理論モデルを開発することを目的とする。
我々のアプローチは、IRT(Innovation resistance Theory)フレームワークに基づいており、TOE(Technology-Organization-Environment)フレームワークの構成要素を拡張しています。
論文 参考訳(メタデータ) (2024-07-29T15:59:19Z) - Towards Responsible Development of Generative AI for Education: An Evaluation-Driven Approach [25.903775277417267]
生成型AI(gen AI)の最近の進歩は、学習者全員に個人家庭教師を提供し、教師全員に指導助手を提供する新しい技術の可能性に興奮をもたらしている。
これは主に、ジェネラルAIプロンプトへの教育的直観の言葉化と、優れた評価プラクティスの欠如によるものである、と我々は主張する。
ここでは,学習者や教育者と共同で,学習科学から7つの多様な教育ベンチマークの実践的なセットに高レベルの原則を翻訳する作業について述べる。
論文 参考訳(メタデータ) (2024-05-21T19:27:59Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
我々は,GenAIツールを教育評価に統合するための,実用的でシンプルで十分に包括的なツールの概要を述べる。
AIアセスメント尺度(AIAS)は、教育者に対して、評価におけるGenAI使用の適切なレベルを選択する権限を与える。
実践的で柔軟なアプローチを採用することで、AIASは、教育におけるGenAIに関する現在の不確実性と不安に対処するための、非常に必要な出発点を形成することができる。
論文 参考訳(メタデータ) (2023-12-12T09:08:36Z) - Tailoring Instructions to Student's Learning Levels Boosts Knowledge Distillation [52.53446712834569]
LGTM(Learning Good Teacher Matters)は,教師の学習プロセスに蒸留の影響を組み込むための効果的な訓練手法である。
我々のLGTMはGLUEベンチマークで6つのテキスト分類タスクに基づいて10の共通知識蒸留基準を上回ります。
論文 参考訳(メタデータ) (2023-05-16T17:50:09Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
本研究では,教師の持つ特徴の一部を,特徴蒸留前の先行知識として統合した動的事前知識(DPK)を提案する。
DPKは,教員モデルと生徒モデルのパフォーマンスを正に相関させ,より大きな教員を適用することで生徒の精度をさらに高めることができる。
論文 参考訳(メタデータ) (2022-06-13T11:52:13Z) - Iterative Teacher-Aware Learning [136.05341445369265]
人間の教育において、教師と学生はコミュニケーション効率を最大化するために適応的に交流することができる。
本稿では,教師の協調意図を可能性関数に組み込むことができる,勾配最適化に基づく教師認識学習者を提案する。
論文 参考訳(メタデータ) (2021-10-01T00:27:47Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
香港大学(CUHK)-Jockey Club AI for the Future Project(AI4Future)は、第3次教育のためのAIカリキュラムを共同開発した。
工学と教育を専門とする14人の教授が、6つの中学校の17の校長と教師と協力してカリキュラムを共同作成した。
共同創造プロセスは、AIにおける教師の知識を高める様々なリソースを生み出し、その課題を教室に持ち込むための教師の自主性を育んだ。
論文 参考訳(メタデータ) (2021-01-19T11:26:19Z) - Dual Policy Distillation [58.43610940026261]
教員政策を学生政策に転換する政策蒸留は、深層強化学習の課題において大きな成功を収めた。
本研究では,2人の学習者が同じ環境下で活動し,環境の異なる視点を探索する,学生学生による二重政策蒸留(DPD)を導入する。
この二重学習フレームワークを開発する上で重要な課題は、同時代の学習に基づく強化学習アルゴリズムにおいて、ピア学習者から有益な知識を特定することである。
論文 参考訳(メタデータ) (2020-06-07T06:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。