論文の概要: Scaling laws for nonlinear dynamical models of speech
- arxiv url: http://arxiv.org/abs/2411.12720v1
- Date: Tue, 19 Nov 2024 18:38:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:03.743603
- Title: Scaling laws for nonlinear dynamical models of speech
- Title(参考訳): 非線形動的音声モデルのスケーリング法則
- Authors: Sam Kirkham,
- Abstract要約: 非線形タスクの動的モデルのパラメータ化のための簡単な数値計算法を提案する。
音声生成を支える非線形なジェスチャー力学の解釈的シミュレーションをいかに促進するかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The addition of a nonlinear restoring force to dynamical models of the speech gesture significantly improves the empirical accuracy of model predictions, but nonlinearity introduces challenges in selecting appropriate parameters and numerical stability, especially when modelling variation in empirical data. We address this issue by introducing simple numerical methods for parameterization of nonlinear task dynamic models. We first illustrate the problem and then outline solutions in the form of power laws that scale nonlinear stiffness terms. We apply the scaling laws to a cubic model and show how they facilitate interpretable simulations of the nonlinear gestural dynamics underpinning speech production.
- Abstract(参考訳): 音声ジェスチャーの動的モデルへの非線形復元力の追加は、モデル予測の経験的精度を大幅に向上させるが、非線形性は、特に経験的データの変動をモデル化する場合に、適切なパラメータと数値安定性を選択する際の課題をもたらす。
本稿では,非線形タスクの動的モデルのパラメータ化のための簡単な数値計算手法を導入することで,この問題に対処する。
まず問題を説明し、次に非線形剛性項をスケールする電力法則の形で解を概説する。
本研究では,このスケーリング法則を立方体モデルに適用し,音声生成を支える非線形ジェスチャー力学の解釈的シミュレーションを容易にする方法を示す。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
本稿では,非線形動的モデリングから情報を明らかにし,それをデータベースモデルに組み込むことにより,標準手法から逸脱する新しいアプローチを提案する。
摂動法による非線形力学現象を明示的に取り入れることにより、予測能力はブルートフォース数値シミュレーションから得られた知識と比較してより現実的で洞察力が高い。
論文 参考訳(メタデータ) (2025-01-21T02:38:28Z) - Modeling Latent Non-Linear Dynamical System over Time Series [7.534744211716623]
本研究では,データから直接方程式を導出することにより時系列を与えられる非線形力学系をモデル化する問題について検討する。
本稿では、時間依存型モデリングを可能にする潜在状態を導入し、この問題を潜時状態の動的推定問題として定式化する。
論文 参考訳(メタデータ) (2024-12-11T05:45:30Z) - Projected Neural Differential Equations for Learning Constrained Dynamics [3.570367665112327]
本稿では,学習ベクトル場の射影を制約多様体の接空間に向けることで,ニューラル微分方程式を制約する新しい手法を提案する。
PNDEは、ハイパーパラメータを少なくしながら、既存のメソッドよりも優れています。
提案手法は、制約付き力学系のモデリングを強化する重要な可能性を示す。
論文 参考訳(メタデータ) (2024-10-31T06:32:43Z) - Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
時間変化線形状態空間モデルは、ニューラルネットワークの数学的解釈可能な表現を得るための強力なツールである。
潜在変数推定のための既存の手法は、動的ノイズやシステムの非線形性に対して堅牢ではない。
本稿では,動的雑音に対するロバスト性を改善するために,分解モデルにおける潜在変数推定に対する確率的アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-29T18:58:39Z) - Observational Scaling Laws and the Predictability of Language Model Performance [51.2336010244645]
本稿では、モデルトレーニングを回避し、100のパブリックモデルからスケーリング法則を構築する観察的アプローチを提案する。
いくつかの創発現象が滑らかでシグモダルな挙動を辿り、小さなモデルから予測可能であることを示す。
言語モデル機能の改善が進むにつれて、Chain-of-ThoughtやSelf-Consistencyといったポストトレーニング介入の影響を予測する方法を示す。
論文 参考訳(メタデータ) (2024-05-17T17:49:44Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。