論文の概要: Online Physics-Informed Dynamic Mode Decomposition: Theory and Applications
- arxiv url: http://arxiv.org/abs/2412.03609v2
- Date: Wed, 19 Feb 2025 07:36:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:55:38.938722
- Title: Online Physics-Informed Dynamic Mode Decomposition: Theory and Applications
- Title(参考訳): オンライン物理インフォームド動的モード分解:理論と応用
- Authors: Biqi Chen, Ying Wang,
- Abstract要約: 動的モード分解(DMD)は、複雑な力学系を解析・モデル化する能力により、研究の注目を集めている。
提案するオンライン物理インフォームドDMD(OPIDMD)は,新しいDMDの凸最適化フレームワークへの適応である。
- 参考スコア(独自算出の注目度): 3.31440855661969
- License:
- Abstract: Dynamic Mode Decomposition (DMD) has received increasing research attention due to its capability to analyze and model complex dynamical systems. However, it faces challenges in computational efficiency, noise sensitivity, and difficulty adhering to physical laws, which negatively affect its performance. Addressing these issues, we present Online Physics-informed DMD (OPIDMD), a novel adaptation of DMD into a convex optimization framework. This approach not only ensures convergence to a unique global optimum, but also enhances the efficiency and accuracy of modeling dynamical systems in an online setting. Leveraging the Bayesian DMD framework, we propose a probabilistic interpretation of Physics-informed DMD (piDMD), examining the impact of physical constraints on the DMD linear operator. Further, we implement online proximal gradient descent and formulate specific algorithms to tackle problems with different physical constraints, enabling real-time solutions across various scenarios. Compared with existing algorithms such as Exact DMD, Online DMD, and piDMD, OPIDMD achieves the best prediction performance in short-term forecasting, e.g. an $R^2$ value of 0.991 for noisy Lorenz system. The proposed method employs a time-varying linear operator, offering a promising solution for the real-time simulation and control of complex dynamical systems.
- Abstract(参考訳): 動的モード分解(DMD)は、複雑な力学系を解析・モデル化する能力により、研究の注目を集めている。
しかし、計算効率、ノイズ感度、物理法則に固執する難しさは、その性能に悪影響を及ぼす。
これらの問題に対処するため、我々は、新しいDMDを凸最適化フレームワークに適応させたオンライン物理インフォームドDMD(OPIDMD)を提示する。
このアプローチは、ユニークなグローバルな最適化への収束を保証するだけでなく、オンライン環境での動的システムのモデリングの効率性と精度を高める。
ベイジアン DMD フレームワークを活用し,物理インフォームド DMD (piDMD) の確率論的解釈を提案し,物理制約が DMD 線形作用素に与える影響について検討した。
さらに、オンライン近位勾配降下法を実装し、特定のアルゴリズムを定式化し、様々なシナリオにまたがるリアルタイムソリューションを実現する。
Exact DMD、Online DMD、piDMDといった既存のアルゴリズムと比較すると、OPIDMDはノイズの多いローレンツシステムでは$R^2$値0.991の予測性能を短時間予測で達成している。
提案手法は時間変化線形演算子を用いて,複雑な力学系の実時間シミュレーションと制御のための有望な解を提供する。
関連論文リスト
- Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems [0.40964539027092917]
本稿では,Parsimonious Dynamic Mode Decomposition (parsDMD)を紹介する。
ParsDMDは、時間的および純粋に時間的データの両方に対して最適にスパースされた動的モードのサブセットを自動選択するように設計された新しいアルゴリズムである。
定在波信号、隠れ力学の同定、流体力学シミュレーション、大気表面温度(SST)データなど、さまざまなデータセットで検証されている。
論文 参考訳(メタデータ) (2024-10-22T03:00:11Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
提案されたフレームワークは、オフラインとオンラインの2つのステージで構成されている。
オンラインステージでは、これらのLANDOモデルを活用して、所望のタイミングで新しいデータを生成する。
高次元力学系に次元還元法を適用して, トレーニングの計算コストを低減させる。
論文 参考訳(メタデータ) (2024-09-25T11:13:50Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Coupled and Uncoupled Dynamic Mode Decomposition in Multi-Compartmental
Systems with Applications to Epidemiological and Additive Manufacturing
Problems [58.720142291102135]
非線形問題に適用した場合,動的分解(DMD)は強力なツールである可能性が示唆された。
特に,Covid-19に対する連続遅延SIRDモデルに対する興味深い数値的応用を示す。
論文 参考訳(メタデータ) (2021-10-12T21:42:14Z) - Bagging, optimized dynamic mode decomposition (BOP-DMD) for robust,
stable forecasting with spatial and temporal uncertainty-quantification [2.741266294612776]
動的モード分解(DMD)は、時間的または時間的データのスナップショット上で、最適な線形力学モデルを学習するためのフレームワークを提供する。
DMDアルゴリズムの大多数は、力学のノイズ測定によるバイアスエラーを起こしやすいため、モデル適合性の低下と不安定な予測能力に繋がる。
最適化されたMDDアルゴリズムは、変数予測最適化によりモデルバイアスを最小限に抑え、安定化された予測能力をもたらす。
論文 参考訳(メタデータ) (2021-07-22T18:14:20Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Unifying Theorems for Subspace Identification and Dynamic Mode
Decomposition [6.735657356113614]
本稿では,SID-DMDアルゴリズムを提案する。
我々は,映像データから直接動的モデルを構築することを目的としたケーススタディを用いて,その展開を実証する。
論文 参考訳(メタデータ) (2020-03-16T19:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。