論文の概要: Families of $d=2$ 2D subsystem stabilizer codes for universal Hamiltonian quantum computation with two-body interactions
- arxiv url: http://arxiv.org/abs/2412.06744v1
- Date: Mon, 09 Dec 2024 18:36:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:54:00.852311
- Title: Families of $d=2$ 2D subsystem stabilizer codes for universal Hamiltonian quantum computation with two-body interactions
- Title(参考訳): 2体相互作用を持つ普遍的ハミルトン量子計算のための$d=2$2Dサブシステム安定化符号のファミリ
- Authors: Phattharaporn Singkanipa, Zihan Xia, Daniel A. Lidar,
- Abstract要約: 我々はBravyiの$A$行列フレームワークを用いて、距離2$の量子エラー検出符号(QEDC)の族を構築する。
最大コードレートを達成するためのコード群を特定し、この制約を少し緩和することで、物理的な局所性を高めたより広い範囲のコードを発見します。
コードレート、物理的局所性、グラフ特性、ペナルティギャップの観点から、これらのコードの性能を評価するための体系的なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Lacking quantum error correction (QEC) schemes for Hamiltonian-based quantum computations due to their continuous-time nature, energetically penalizing the errors is an effective error suppression technique. In this work, we construct families of distance-$2$ quantum error detection codes (QEDCs) using Bravyi's $A$ matrix framework, tailored for penalty-protection schemes. We identify a family of codes achieving the maximum code rate and, by slightly relaxing this constraint, uncover a broader spectrum of codes with enhanced physical locality, increasing their practical applicability. Additionally, we propose an algorithm to map the required connectivity into more hardware-feasible configurations, offering insights for quantum hardware design. Finally, we provide a systematic framework to evaluate the performance of these codes in terms of code rate, physical locality, graph properties, and penalty gap, enabling informed selection of codes for specific quantum computing applications.
- Abstract(参考訳): ハミルトン型量子計算に対する量子エラー補正(QEC)スキームの連続的な性質により、エラーをエネルギックにペナルティ化する手法は、効果的なエラー抑制手法である。
本研究では,Bravyiの$A$行列フレームワークを用いて,距離2$の量子エラー検出符号(QEDC)のファミリを構築する。
最大コードレートを達成するためのコード群を特定し、この制約を少し緩和することで、物理的な局所性を高めてより広い範囲のコードを発見し、実用性を高めます。
さらに、必要となる接続をよりハードウェア可能な構成にマッピングし、量子ハードウェア設計の洞察を提供するアルゴリズムを提案する。
最後に、コードレート、物理的局所性、グラフ特性、ペナルティギャップの観点から、これらのコードの性能を評価するための体系的なフレームワークを提供し、特定の量子コンピューティングアプリケーションに対するコードの選択を可能にする。
関連論文リスト
- Demonstrating dynamic surface codes [138.1740645504286]
曲面符号の3つの時間力学的実装を実験的に実証した。
まず、曲面コードを六角格子上に埋め込んで、キュービットあたりの結合を4つから3つに減らした。
第二に、サーフェスコードを歩き、データの役割を交換し、各ラウンドごとにキュービットを測定し、蓄積した非計算エラーの組込み除去による誤り訂正を達成する。
第3に、従来のCNOTの代わりにiSWAPゲートを用いた表面コードを実現し、追加のオーバーヘッドを伴わずに、エラー訂正のための実行可能なゲートセットを拡張した。
論文 参考訳(メタデータ) (2024-12-18T21:56:50Z) - Correction of circuit faults in a stacked quantum memory using rank-metric codes [13.996171129586733]
マルチキュービットセルを用いたスタック型量子メモリのモデルを提案する。
我々は、ランクメトリック符号を量子設定に一般化することにより、このモデルのための量子誤り訂正符号を設計する。
論文 参考訳(メタデータ) (2024-11-14T04:19:40Z) - Quantum subspace verification for error correction codes [13.856955493134908]
本稿では,量子誤り訂正符号部分空間の知識を活用し,潜在的な測定予算を削減する量子部分空間検証の枠組みを紹介する。
有名なCalderbank-Shor-Steane符号やQLDPC安定化符号のような特定の符号の場合、設定数とサンプルの複雑さは著しく減少する。
提案した部分空間検証と直接忠実度推定を組み合わせることで、一般的なマジック論理状態の忠実度を検証するためのプロトコルを構築する。
論文 参考訳(メタデータ) (2024-10-16T13:28:33Z) - Wire Codes [0.0]
我々は、任意の量子安定化器コードを、重みと次数3の関連するコードパラメータを持つサブシステムコードに変換するレシピを紹介します。
私たちはレシピ"ワイヤコード"によって生成されたサブシステムコードと呼んでいる。
この結果は,汎用グラフ上に低オーバーヘッドサブシステムコードを構築するための一般的な方法である。
論文 参考訳(メタデータ) (2024-10-14T06:27:09Z) - Linear-optical quantum computation with arbitrary error-correcting codes [0.0]
高速量子誤り訂正符号は、フォールトトレラント量子コンピュータの命令スケールを緩和する。
これらの特性を持つ線形光学アーキテクチャを提供し、任意の符号と一般的な格子上のゴッテマン・キタエフ・プレスキルキュービットと互換性がある。
論文 参考訳(メタデータ) (2024-08-07T23:23:28Z) - Fault-tolerant hyperbolic Floquet quantum error correcting codes [0.0]
ハイパボリックフロケット符号」と呼ばれる動的に生成された量子誤り訂正符号の族を導入する。
私たちの双曲的フロッケ符号の1つは、コード距離8の52の論理キュービットをエンコードするために400の物理キュービットを使用します。
小さなエラー率では、この符号に匹敵する論理的誤り抑制は、同じノイズモデルとデコーダを持つハニカム・フロケ符号を使用する場合、多くの物理量子ビット (1924) の5倍を必要とする。
論文 参考訳(メタデータ) (2023-09-18T18:00:02Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
単一マルチレベルキューディットに実装された安定化器量子エラー訂正符号について論じる。
これらのコードは、quditの特定の物理的エラーに合わせてカスタマイズすることができ、効果的にそれらを抑制することができる。
分子スピン四重項上のフォールトトレラントな実装を実証し、線形キューディットサイズのみの成長を伴うほぼ指数関数的な誤差抑制を示す。
論文 参考訳(メタデータ) (2023-07-20T10:51:23Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
ボソニック符号は、qubit型量子情報をより大きなボソニックヒルベルト空間にマッピングする。
我々は、これらの符号 GKP qunaught 状態の2つのインスタンスと、ゼロ論理エンコードされた量子ビットに対応する4つの対称二項状態とを変換する。
GKPqunaught状態は98%以上、確率は約3.14%である。
論文 参考訳(メタデータ) (2023-01-24T14:17:07Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
我々は、$c-不連続性を計算すること、あるいはそれを定数乗算係数の範囲内で近似することの問題はNP完全であることを示す。
CSSコード、$dコード、ハイパーグラフコードなど、さまざまなコードファミリの相違点に関するバウンダリを提供します。
以上の結果から,一般的な量子誤り訂正符号に対するフォールトトレラント論理ゲートの発見は,計算に難題であることが示唆された。
論文 参考訳(メタデータ) (2021-08-10T15:00:20Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。