論文の概要: Wire Codes
- arxiv url: http://arxiv.org/abs/2410.10194v1
- Date: Mon, 14 Oct 2024 06:27:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 02:24:44.280799
- Title: Wire Codes
- Title(参考訳): ワイヤコード
- Authors: Nouédyn Baspin, Dominic Williamson,
- Abstract要約: 我々は、任意の量子安定化器コードを、重みと次数3の関連するコードパラメータを持つサブシステムコードに変換するレシピを紹介します。
私たちはレシピ"ワイヤコード"によって生成されたサブシステムコードと呼んでいる。
この結果は,汎用グラフ上に低オーバーヘッドサブシステムコードを構築するための一般的な方法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum information is fragile and must be protected by a quantum error-correcting code for large-scale practical applications. Recently, highly efficient quantum codes have been discovered which require a high degree of spatial connectivity. This raises the question of how to realize these codes with minimal overhead under physical hardware connectivity constraints. Here, we introduce a general recipe to transform any quantum stabilizer code into a subsystem code with related code parameters that has weight and degree three, and local interactions on a given graph. We call the subsystem codes produced by our recipe "wire codes". These codes can be adapted to have a local implementation on any graph that supports a low-density embedding of an input tanner graph, with an overhead that depends on the embedding. Applying our results to hypercubic lattices leads to a construction of local subsystem codes with optimal scaling code parameters in any fixed spatial dimension. Similarly, applying our results to families of expanding graphs leads to local codes on these graphs with code parameters that depend on the degree of expansion. Our results constitute a general method to construct low-overhead subsystem codes on general graphs, which can be applied to adapt highly efficient quantum error correction procedures to hardware with restricted connectivity.
- Abstract(参考訳): 量子情報は脆弱であり、大規模な実用用途のために量子エラー訂正コードで保護されなければならない。
近年,高効率な空間接続を必要とする量子符号が発見されている。
これにより、物理的なハードウェア接続制約の下で、最小限のオーバーヘッドでこれらのコードを実現する方法が疑問視される。
ここでは、任意の量子安定化器コードを、重みと次数3の関連するコードパラメータを持つサブシステムコードに変換するための一般的なレシピと、与えられたグラフ上の局所的な相互作用を紹介する。
私たちは、レシピによって生成されたサブシステムコード(subsystem codes)を"ワイヤコード(wire codes)"と呼びます。
これらのコードは、入力タナーグラフの低密度埋め込みをサポートする任意のグラフに局所的な実装を持つように適応することができ、そのオーバーヘッドは埋め込みに依存する。
我々の結果を超立方格子に適用すると、任意の固定空間次元における最適なスケーリング符号パラメータを持つ局所的なサブシステム符号が構築される。
同様に、グラフの拡張の族に結果を適用すると、拡張の度合いに依存するコードパラメータを持つグラフ上の局所的なコードが得られる。
提案手法は,高効率な量子誤り訂正処理を制限された接続性を持つハードウェアに適用するために適用可能な,汎用グラフ上の低オーバーヘッドサブシステムコードを構築するための一般的な方法である。
関連論文リスト
- List Decodable Quantum LDPC Codes [49.2205789216734]
我々は、ほぼ最適レート距離のトレードオフを持つ量子低密度パリティチェック(QLDPC)符号の構成を行う。
復号化可能なQLDPCコードとユニークなデコーダを効率よくリストアップする。
論文 参考訳(メタデータ) (2024-11-06T23:08:55Z) - Flag Proxy Networks: Tackling the Architectural, Scheduling, and Decoding Obstacles of Quantum LDPC codes [1.870400753080051]
本稿では,高次曲面符号と高次カラー符号の2種類のQLDPC符号について考察する。
次数4 FPNは、それぞれ2.9times$と5.5times$で、d = 5$平面面符号よりも空間効率が高い。
双曲符号は、その平面コードに匹敵するエラー率を持つ。
論文 参考訳(メタデータ) (2024-09-22T01:08:58Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
低密度パリティ・チェック (LDPC) コードは、他の種類のコードに対していくつかの利点がある。
提案手法は,既存の人気符号の復号性能を桁違いに向上させる。
論文 参考訳(メタデータ) (2024-06-09T12:08:56Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
量子LDPC符号は、消滅する符号化率を持つ表面符号から、一定の符号化率と線形距離を持つ非常に有望な符号まで様々である。
我々は、一般化自転車(GB)符号として知られる量子LDPC符号のサブセットにインスパイアされた小さな量子符号を考案した。
論文 参考訳(メタデータ) (2024-01-15T10:38:13Z) - Concatenating Binomial Codes with the Planar Code [0.0]
回転ボソニック符号は超伝導量子ビット実験における量子ビットの魅力的な符号化である。
耐故障性量子計算のための計測に基づくスキームにおいて,これらの符号と平面符号の整合性について検討する。
二項符号量子ビットを用いた平面符号の優れた性能を得るために、適応位相測定、最大量子状態推定、重み付き最小重み復号法を実装する必要がある。
論文 参考訳(メタデータ) (2023-12-22T02:34:56Z) - Improved rate-distance trade-offs for quantum codes with restricted
connectivity [34.95121779484252]
量子コードに関連する接続グラフがコードパラメータを制約する方法について検討する。
接続グラフにおける分離器の大きさの関数として、より密な次元距離トレードオフを確立する。
論文 参考訳(メタデータ) (2023-07-06T20:38:34Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - KO codes: Inventing Nonlinear Encoding and Decoding for Reliable
Wireless Communication via Deep-learning [76.5589486928387]
ランドマークコードは、Reed-Muller、BCH、Convolution、Turbo、LDPC、Polarといった信頼性の高い物理層通信を支える。
本論文では、ディープラーニング駆動型(エンコーダ、デコーダ)ペアの計算効率の良いファミリーであるKO符号を構築する。
KO符号は最先端のリード・ミュラー符号と極符号を破り、低複雑さの逐次復号法で復号された。
論文 参考訳(メタデータ) (2021-08-29T21:08:30Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
我々は、$c-不連続性を計算すること、あるいはそれを定数乗算係数の範囲内で近似することの問題はNP完全であることを示す。
CSSコード、$dコード、ハイパーグラフコードなど、さまざまなコードファミリの相違点に関するバウンダリを提供します。
以上の結果から,一般的な量子誤り訂正符号に対するフォールトトレラント論理ゲートの発見は,計算に難題であることが示唆された。
論文 参考訳(メタデータ) (2021-08-10T15:00:20Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
トレリス復号器は強い構造を持ち、古典的符号化理論を用いて結果をガイドとして拡張し、復号グラフの構造特性を計算できる正準形式を示す。
修正されたデコーダは、任意の安定化コード$S$で動作し、コードの正規化子のコンパクトでグラフィカルな表現を構築するワンタイムオフライン、$Sperp$、Viterbiアルゴリズムを使った高速でパラレルなオンライン計算である。
論文 参考訳(メタデータ) (2021-06-15T16:01:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。