論文の概要: Learning Physics Informed Neural ODEs With Partial Measurements
- arxiv url: http://arxiv.org/abs/2412.08681v1
- Date: Wed, 11 Dec 2024 18:17:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:33:51.681209
- Title: Learning Physics Informed Neural ODEs With Partial Measurements
- Title(参考訳): 部分的測定による物理インフォームドニューラルネットワークの学習
- Authors: Paul Ghanem, Ahmet Demirkaya, Tales Imbiriba, Alireza Ramezani, Zachary Danziger, Deniz Erdogmus,
- Abstract要約: 我々は,システム状態の一部が測定されていない場合に,動的制御系を学習する問題に取り組む。
本稿では,非測定プロセスの動的制御を学習可能な逐次最適化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.313167463468499
- License:
- Abstract: Learning dynamics governing physical and spatiotemporal processes is a challenging problem, especially in scenarios where states are partially measured. In this work, we tackle the problem of learning dynamics governing these systems when parts of the system's states are not measured, specifically when the dynamics generating the non-measured states are unknown. Inspired by state estimation theory and Physics Informed Neural ODEs, we present a sequential optimization framework in which dynamics governing unmeasured processes can be learned. We demonstrate the performance of the proposed approach leveraging numerical simulations and a real dataset extracted from an electro-mechanical positioning system. We show how the underlying equations fit into our formalism and demonstrate the improved performance of the proposed method when compared with baselines.
- Abstract(参考訳): 物理的および時空間的プロセスを管理する学習力学は、特に状態が部分的に測定された場合において、難しい問題である。
本研究では,システム状態の一部が測定されていない場合,特に非測定状態を生成するダイナミクスが未知の場合において,これらのシステムを管理するダイナミクスを学習する問題に取り組む。
状態推定理論と物理インフォームドニューラル ODE に着想を得て,未測定プロセスの動的処理を学習する逐次最適化フレームワークを提案する。
本稿では,電気機械式位置決めシステムから抽出した数値シミュレーションと実データを用いた提案手法の性能を示す。
基礎となる方程式がフォーマリズムにどのように適合するかを示し、ベースラインと比較して提案手法の性能改善を実証する。
関連論文リスト
- Integrating Physics-Informed Deep Learning and Numerical Methods for Robust Dynamics Discovery and Parameter Estimation [0.0]
本研究では,動的システム理論における2つの課題を解決するために,ディープラーニング手法と微分方程式の古典的数値法を組み合わせる。
その結果,カオス力学を示す一連のテスト問題に対する提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-05T22:40:02Z) - Physics-informed Discovery of State Variables in Second-Order and Hamiltonian Systems [1.7406327893433848]
本研究では, 2階ハミルトニアン系の物理特性を利用してベースラインモデルを制約する手法を提案する。
提案モデルでは,非冗長かつ解釈可能な状態変数の最小セットを特定することにより,ベースラインモデルよりも優れる。
論文 参考訳(メタデータ) (2024-08-21T15:10:50Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
物理構造を符号化するディープラーニングフレームワークが,PDEシステム体制に関する様々な問題に適用可能であることを示す。
物理を符号化する結果の学習パラダイムは、広範囲な数値実験により、高い精度、堅牢性、解釈可能性、一般化可能性を示す。
論文 参考訳(メタデータ) (2021-06-09T03:02:20Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。