論文の概要: Forward and Inverse Simulation of Pseudo-Two-Dimensional Model of Lithium-Ion Batteries Using Neural Networks
- arxiv url: http://arxiv.org/abs/2412.13200v1
- Date: Mon, 02 Dec 2024 02:50:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-22 08:33:58.745649
- Title: Forward and Inverse Simulation of Pseudo-Two-Dimensional Model of Lithium-Ion Batteries Using Neural Networks
- Title(参考訳): ニューラルネットワークを用いたリチウムイオン電池の擬似2次元モデルの前方・逆シミュレーション
- Authors: Myeong-Su Lee, Jaemin Oh, Dong-Chan Lee, KangWook Lee, Sooncheol Park, Youngjoon Hong,
- Abstract要約: 擬二次元(P2D)モデルの前方及び逆シミュレーションにおいて,バトラー・ボルマー方程式の高非線形性によって生じる課題に対処する。
提案手法は,BV方程式を含む前方問題と逆問題の両方を解くのに有効である。
- 参考スコア(独自算出の注目度): 7.0521374280670805
- License:
- Abstract: In this work, we address the challenges posed by the high nonlinearity of the Butler-Volmer (BV) equation in forward and inverse simulations of the pseudo-two-dimensional (P2D) model using the physics-informed neural network (PINN) framework. The BV equation presents significant challenges for PINNs, primarily due to the hyperbolic sine term, which renders the Hessian of the PINN loss function highly ill-conditioned. To address this issue, we introduce a bypassing term that improves numerical stability by substantially reducing the condition number of the Hessian matrix. Furthermore, the small magnitude of the ionic flux \( j \) often leads to a common failure mode where PINNs converge to incorrect solutions. We demonstrate that incorporating a secondary conservation law for the solid-phase potential \( \psi \) effectively prevents such convergence issues and ensures solution accuracy. The proposed methods prove effective for solving both forward and inverse problems involving the BV equation. Specifically, we achieve precise parameter estimation in inverse scenarios and reliable solution predictions for forward simulations.
- Abstract(参考訳): 本研究では,物理インフォームドニューラルネットワーク(PINN)を用いた擬二次元(P2D)モデルの前方および逆シミュレーションにおいて,バトラー・ボルマー方程式(BV)の高非線形性に起因する課題に対処する。
BV方程式は、主に双曲性シネ項が原因で、PINN損失関数のヘシアンを高度に不規則にする。
この問題に対処するために,ヘッセン行列の条件数を大幅に削減し,数値安定性を向上させるバイパス項を導入する。
さらに、イオン束 \(j \) の小さな大きさは、しばしば、PINNが誤った解に収束する共通の失敗モードにつながる。
固相ポテンシャル \( \psi \) に二次保存法を組み込むことで、そのような収束問題を効果的に防止し、解の精度を保証できることを実証する。
提案手法は,BV方程式を含む前方問題と逆問題の両方を解くのに有効である。
具体的には、逆シナリオにおける正確なパラメータ推定と、フォワードシミュレーションのための信頼性の高い解予測を実現する。
関連論文リスト
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNは2+1次元非線形偏微分方程式の渦解の研究に用いられる。
保存法則(cPINN)、初期プロファイルの変形、および識別の解像度を改善するための摩擦アプローチを考察する。
論文 参考訳(メタデータ) (2024-10-23T08:29:13Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
論文 参考訳(メタデータ) (2024-09-06T07:17:01Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Efficient Bayesian inference using physics-informed invertible neural
networks for inverse problems [6.97393424359704]
物理インフォームド・インバータブルニューラルネットワーク(PI-INN)を利用したベイズ逆問題に対する革新的なアプローチを提案する。
PI-INNはベイズ逆問題に対して正確かつ効率的な生成モデルを提供し、抽出可能な後部密度推定をもたらす。
特定の物理インフォームドディープラーニングモデルとして、PI-INNの主要なトレーニング課題は独立性制約の強化である。
論文 参考訳(メタデータ) (2023-04-25T03:17:54Z) - Maximum-likelihood Estimators in Physics-Informed Neural Networks for
High-dimensional Inverse Problems [0.0]
物理インフォームドニューラルネットワーク(PINN)は、逆常微分方程式(ODE)と偏微分方程式(PDE)を解くのに適した数学的足場を証明した。
本研究では,逆PINNを最大自由度推定器(MLE)でフレーム化して,テイラー展開による物理モデル空間への明示的な誤差伝搬を可能にすることを実証する。
論文 参考訳(メタデータ) (2023-04-12T17:15:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。