論文の概要: Approximation Rates in Fréchet Metrics: Barron Spaces, Paley-Wiener Spaces, and Fourier Multipliers
- arxiv url: http://arxiv.org/abs/2501.04023v2
- Date: Tue, 14 Jan 2025 13:40:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:25:52.418745
- Title: Approximation Rates in Fréchet Metrics: Barron Spaces, Paley-Wiener Spaces, and Fourier Multipliers
- Title(参考訳): フレシェ計量における近似速度:バロン空間、パリー・ウィーナー空間、フーリエ乗数
- Authors: Ahmed Abdeljawad, Thomas Dittrich,
- Abstract要約: フーリエ領域の対応する記号を近似することで線形微分作用素の一般近似機能について検討する。
その意味で、近似誤差をFr'echetメートル法で測定する。
すると、我々は主定理の自然な拡張に焦点を合わせ、そこでは半ノルムの列の仮定を小さくすることができる。
- 参考スコア(独自算出の注目度): 1.4732811715354452
- License:
- Abstract: Operator learning is a recent development in the simulation of Partial Differential Equations (PDEs) by means of neural networks. The idea behind this approach is to learn the behavior of an operator, such that the resulting neural network is an (approximate) mapping in infinite-dimensional spaces that is capable of (approximately) simulating the solution operator governed by the PDE. In our work, we study some general approximation capabilities for linear differential operators by approximating the corresponding symbol in the Fourier domain. Analogous to the structure of the class of H\"ormander-Symbols, we consider the approximation with respect to a topology that is induced by a sequence of semi-norms. In that sense, we measure the approximation error in terms of a Fr\'echet metric, and our main result identifies sufficient conditions for achieving a predefined approximation error. Secondly, we then focus on a natural extension of our main theorem, in which we manage to reduce the assumptions on the sequence of semi-norms. Based on existing approximation results for the exponential spectral Barron space, we then present a concrete example of symbols that can be approximated well.
- Abstract(参考訳): 演算子学習は、ニューラルネットワークによる部分微分方程式(PDE)のシミュレーションにおける最近の発展である。
このアプローチの背景にある考え方は、PDEが支配する解作用素を(およそ)シミュレートできる無限次元空間における(近似的な)写像であるような作用素の振る舞いを学ぶことである。
本研究では、フーリエ領域の対応する記号を近似することにより、線形微分作用素の一般近似機能について検討する。
H\"ormander-Symbols のクラスの構造に類似して、半ノルム列によって誘導される位相に関する近似を考える。
その意味では、Fr'echetメートル法を用いて近似誤差を測定し、本研究の主な結果は、予め定義された近似誤差を達成するのに十分な条件を特定する。
次に、我々は主定理の自然な拡張に焦点を合わせ、そこでは半ノルムの列上の仮定を小さくする。
指数スペクトルバロン空間に対する既存の近似結果に基づいて、よく近似できる記号の具体的な例を示す。
関連論文リスト
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
離散化マルコフ過程に基づく$mu_phi $の線形汎函数の2つの推定器を検討する。
誤差境界は、本質的に定義されたランゲヴィン拡散の離散化を用いてサンプリングと推定のために導出される。
論文 参考訳(メタデータ) (2023-12-22T18:01:11Z) - Space-Time Approximation with Shallow Neural Networks in Fourier
Lebesgue spaces [1.74048653626208]
ボヒナー・ソボレフ空間における異方性重み付きフーリエ・ルベーグ空間の包含について検討する。
異方性重み付きフーリエ・ルベーグ空間からの関数の近似率とボヒナー・ソボレフノルムのSNNによる近似の有界性を確立する。
論文 参考訳(メタデータ) (2023-12-13T19:02:27Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
我々は,最大限界推定法を実装するための相互作用粒子系のクラスを開発する。
特に、この拡散の定常測度のパラメータ境界がギブス測度の形式であることを示す。
特定の再スケーリングを用いて、このシステムの幾何学的エルゴディディティを証明し、離散化誤差を限定する。
時間的に一様で、粒子の数で増加しない方法で。
論文 参考訳(メタデータ) (2023-03-23T16:50:08Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
近似可能な速度に応じて関数を分類するニューラルネットワーク近似空間を考察する。
p$の異なる値に対して、これらの空間間の埋め込み定理を証明する。
古典函数空間の場合と同様、可積分性を高めるために「滑らかさ」(すなわち近似率)を交換できる。
論文 参考訳(メタデータ) (2021-10-28T17:11:38Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
最小の仮定の下で、$[Pf](x) := mathbbE[f(Y) mid X = x ]$ で定義される$L2$-operatorの近似について検討する。
我々は、再生されたカーネル空間上で作用するヒルベルト・シュミット作用素により、作用素ノルムにおいて$P$が任意に適切に近似できることを証明した。
論文 参考訳(メタデータ) (2020-12-23T19:06:12Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。