論文の概要: Diffeomorphic Latent Neural Operators for Data-Efficient Learning of Solutions to Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2411.18014v2
- Date: Fri, 29 Nov 2024 18:57:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 11:38:04.459093
- Title: Diffeomorphic Latent Neural Operators for Data-Efficient Learning of Solutions to Partial Differential Equations
- Title(参考訳): 偏微分方程式に対する解の効率的なデータ学習のための微分型潜在ニューラル演算子
- Authors: Zan Ahmad, Shiyi Chen, Minglang Yin, Avisha Kumar, Nicolas Charon, Natalia Trayanova, Mauro Maggioni,
- Abstract要約: 計算された解演算子から偏微分方程式系(PDE)への近似は、科学や工学の様々な分野において必要である。
十分なデータのサンプル化を必要とせず,複数の領域にまたがって一般化可能なPDEソリューション演算子を学習するために,少数の真理解場に潜伏したニューラル演算子を訓練することができることを提案する。
- 参考スコア(独自算出の注目度): 5.308435208832696
- License:
- Abstract: A computed approximation of the solution operator to a system of partial differential equations (PDEs) is needed in various areas of science and engineering. Neural operators have been shown to be quite effective at predicting these solution generators after training on high-fidelity ground truth data (e.g. numerical simulations). However, in order to generalize well to unseen spatial domains, neural operators must be trained on an extensive amount of geometrically varying data samples that may not be feasible to acquire or simulate in certain contexts (e.g., patient-specific medical data, large-scale computationally intensive simulations.) We propose that in order to learn a PDE solution operator that can generalize across multiple domains without needing to sample enough data expressive enough for all possible geometries, we can train instead a latent neural operator on just a few ground truth solution fields diffeomorphically mapped from different geometric/spatial domains to a fixed reference configuration. Furthermore, the form of the solutions is dependent on the choice of mapping to and from the reference domain. We emphasize that preserving properties of the differential operator when constructing these mappings can significantly reduce the data requirement for achieving an accurate model due to the regularity of the solution fields that the latent neural operator is training on. We provide motivating numerical experimentation that demonstrates an extreme case of this consideration by exploiting the conformal invariance of the Laplacian
- Abstract(参考訳): 計算された解演算子から偏微分方程式系(PDE)への近似は、科学や工学の様々な分野において必要である。
ニューラルネットワークは、高忠実度基底真理データ(例えば数値シミュレーション)をトレーニングした後、これらの解生成物を予測するのに非常に効果的であることが示されている。
しかし、空間的領域をうまく一般化するためには、特定のコンテキスト(例えば、患者固有の医療データ、大規模に計算集約的なシミュレーションなど)で取得またはシミュレートできないような、幾何的に変化するデータサンプルを大量にトレーニングする必要がある。
さらに、解の形式は参照領域への写像の選択に依存する。
これらの写像を構成する際の微分演算子の保存特性は、潜在神経演算子が訓練している解場の正則性により、精度の高いモデルを実現するためのデータ要求を著しく低減することができることを強調する。
我々は、ラプラシアンの共形不変性を利用して、この考察の極端な事例を示す動機付き数値実験を提供する。
関連論文リスト
- A Multimodal PDE Foundation Model for Prediction and Scientific Text Descriptions [13.48986376824454]
PDE基礎モデルは、ニューラルネットワークを使用して、複数の微分方程式への近似を同時に訓練する。
本稿では,変換器をベースとしたアーキテクチャを応用し,解演算子を近似した新しいマルチモーダル深層学習手法を提案する。
我々のアプローチは解釈可能な科学的テキスト記述を生成し、基礎となる力学と解の性質について深い洞察を提供する。
論文 参考訳(メタデータ) (2025-02-09T20:50:28Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations [13.208548352092455]
任意の形状の領域上の偏微分方程式に対して、ニューラル作用素の既存の研究は、幾何学から解への写像を学ぼうとする。
本稿では、幾何学的変形に対する解の滑らかな依存を学習するために、参照ニューラル演算子(RNO)を提案する。
RNOはベースラインモデルの精度を大きなリードで上回り、最大80%のエラー低減を達成する。
論文 参考訳(メタデータ) (2024-05-27T06:50:17Z) - Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
拡散に基づく生成モデルは、ニューラル演算子に好適な多くの特性を示す。
本稿では,複数のタスクに適応可能な単一モデルを,トレーニング中のタスク間で交互に学習することを提案する。
論文 参考訳(メタデータ) (2024-05-11T21:23:55Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Learning the Solution Operator of Boundary Value Problems using Graph
Neural Networks [0.0]
グラフニューラルネットワーク(GNN)とスペクトルグラフ畳み込みを用いた2つの異なる時間非依存PDEに対する一般解演算子を設計する。
我々は、様々な形状と不均一性の有限要素ソルバからシミュレーションデータを用いてネットワークを訓練する。
有限要素メッシュの変動が多岐にわたる多様なデータセット上でのトレーニングが,優れた一般化結果を得るための鍵となる要素であることがわかった。
論文 参考訳(メタデータ) (2022-06-28T15:39:06Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。